Canley Corridor Overland Flood Study

- Final
- December 2009

In association with

FAIRFIELD CONSULTING SERVICES
 A Division of Fairfield City Council

Canley Corridor Overland Flood Study

- Final
- December 2009

Sinclair Knight Merz
ABN 37001024095
100 Christie Street
PO Box 164
St Leonards NSW
Australia 1590
Tel: +61 299282100
Fax: +61 299282500
Web: www.skmconsulting.com

COPYRIGHT: The concepts and information contained in this document are the property of Sinclair Knight Merz Pty Ltd. Use or copying of this document in whole or in part without the written permission of Sinclair Knight Merz constitutes an infringement of copyright.
LIMITATION: This report has been prepared on behalf of and for the exclusive use of Sinclair Knight Merz Pty Ltd's Client, and is subject to and issued in connection with the provisions of the agreement between Sinclair Knight Merz and its Client. Sinclair Knight Merz accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

Contents

Executive Summary

1. Introduction 3
1.1 Overview 3
1.2 Structure of this Report 3
2. Background 4
2.1 Context of Overland Flood Studies 4
2.2 FCC Overland Flood Studies Program 4
2.3 Study Objectives 5
2.4 Study Area 6
2.5 History of Flooding 8
2.6 Previous Studies 8
2.7 Overview of Study Methodology 9
3. Available Data 11
3.1 Airborne Laser Survey 11
3.2 Auslmage Aerial Photography 11
3.3 SKM Building Polygon Data Set 12
3.4 Drainage Information Dataset 12
3.5 Cadastral and LEP information 13
3.6 Previous Studies 13
3.7 Record of Historical of Overland Flow Problems 13
3.8 Design Rainfall Data 14
4. Catchment and Stormwater System Model Development 15
4.1 Overview 15
4.2 Model Calibration and Verification 15
4.3 DRAINS Model 16
4.3.1 Approach 16
4.3.2 Drainage Network Layout 17
4.3.3 Network Parameters 20
4.3.4 Catchment data 20
4.3.5 Overland flowpaths 21
4.3.6 Rainfall data 22
4.3.7 Estimation of PMP Storms 22
4.3.8 Development of the Limited DRAINS model 23
4.4 RAFTS Model 24

SINCLAIR KNIGHT MERZ
4.4.1 Overview 24
4.4.2 Subcatchment delineation 25
4.4.3 Rainfall losses 25
4.4.4 Surface roughness parameters 25
4.4.5 Vectored Slopes 26
5. Hydraulic Modelling 27
5.1 Overview 27
5.2 Modelling Software 27
5.3 Model Setup 27
5.3.1 Background 27
5.3.2 Digital Terrain Model 27
5.3.3 Building Polygons 28
5.3.4 Property Fencelines 28
5.3.5 Surface Roughness 28
5.3.6 Boundary Conditions 29
5.3.7 Stormwater Network Representation 29
5.3.8 Hydraulic Model Calibration and Verification 30
6. Sensitivity of Hydrological Modelling 33
6.1 Overview 33
6.2 Peak Flood Depth 33
6.3 Difference in Peak Flood Depth between Hydrological Models 33
6.4 Draft Flood Risk Precinct Result Sensitivity 44
6.4.1 Risk Categories 44
6.4.2 Sensitivity Mapping 45
6.5 Verification of Results 45
6.6 Model Development Costs 52
6.7 Sensitivity of Hydrological Modelling - Conclusions 54
6.8 Sensitivity of Hydrological Modelling - Recommendations 54
7. Flood Mapping Results 55
7.1 Background 55
7.2 Flood Outline Mapping 55
7.3 Peak Flows across Selected Roads 55
7.4 The Impact of Fencing on Flood Outline Mapping 55
7.5 Flood Risk Precinct Mapping Process 56
7.5.1 Interim Flood Risk Precinct Map Production 57
7.5.2 Final Flood Risk Precinct Map Production 57
7.6 Mapping the Zone of Significant Flow 59
7.7 Summary of Mapping Outcomes 59
8. Conclusions 61
8.1 Hydrologic Modelling Methodology 61
8.2 Canley Corridor Flood Behaviour and Risk 61
9. Glossary 63
10. References 66
Appendix A Hydrological / Stormwater Model Data
Appendix B Hydrological / Stormwater Model Flows
Appendix C Peak Flows Across Selected Roads
Appendix D 100 Year ARI Flood Mapping
Appendix E Flood Risk Precinct Mapping
Appendix F Fence Blockage Modelling

Document history and status

Revision	Date issued	Reviewed by	Approved by	Date approved	Revision type
1	$27 / 6 / 7$	Akhter Hossain	Akhter Hossain	$27 / 6 / 7$	
2	$15 / 9 / 7$	Akhter Hossain	Akhter Hossain	$15 / 9 / 7$	
3	$26 / 10 / 9$	Craig Mackay	Craig Mackay	$26 / 10 / 9$	

Distribution of copies

Revision	Copy no	Quantity	Issued to
1	Electronic	1	Nilmini Desilva
2	Electronic	1	Nilmini Desilva
3	Electronic	1	Nilmini Desilva

Printed:	30 November 2009
Last saved:	30 November 2009 03:02 PM
File name:	I:\ENVR\Projects\EN01996\Deliverables\FinallCanley_Final_v5.doc
Author:	Cecilia Tabera, Mark Rice, Akhter Hossain, Craig Mackay
Project manager:	Akhter Hossain
Name of organisation:	Fairfield City Council
Name of project:	Canley Corridor Flood Study
Name of document:	
Document version:	Final
Project number:	EN01996

Executive Summary

The NSW Floodplain Development Manual (2005) states that local overland flow is a significant problem that should be considered alongside mainstream river and creek flooding. Identifying overland flow flooding within an entire Local Government Area (LGA) is a major undertaking, and instead of doing this for the entire LGA in one step, Fairfield City Council (FCC) has decided to undertake a number of separate overland flow studies.

The Canley Corridor Overland Flood Study is the first detailed overland flow flood study to be carried out by FCC. The primary objectives of the study are to:

- test the sensitivity of overland flood modelling to different assumptions about the capacity of the existing stormwater drainage system, and use the conclusions to establish a methodology for future overland flood studies
- identify major overland flow paths within the Canley Corridor catchment study area, and properties at risk from local overland flooding
- produce flood extent and flood risk precinct maps for the study area

Investigations of different stormwater system modelling approaches compared the precision of results and the cost and time required to carry out the work. It was found that the best outcome was achieved by a combined hydrological and stormwater pipe network model that included larger pipes and structures in the stormwater network, and which took into account known historical trouble spots. While detailed modelling of the entire stormwater network yielded more precise results, it did not affect which areas were identified as being at high risk. The additional cost involved in collecting data and constructing a detailed model was not considered worthwhile for the increase in precision this gave. This information will help guide data collection and model development for the remaining local overland flow studies FCC will be carrying out.

Flood Risk Precinct Maps have been produced as the key output from the study. These maps are based on modelling of the 100 year Average Recurrence Interval (ARI) and Probable Maximum Flood (PMF) events, and use the FCC Development Control Plan flood risk precinct categories. This mapping identified:

- areas of High Risk Precinct in the middle of the catchment around McBurney Road, along Freeman Avenue adjacent to Orphan School Creek, and along major overland flow paths on Railway Parade and Sackville Street;
- areas of Medium Risk Precinct running from southwest to northeast from Cabramatta Road, across Cumberland Highway, and covering much of the Canley Vale Road East and Sackville Street area;
- areas of Low Risk Precinct following the outline of the Medium Risk Precinct closely, although extending significantly beyond the Medium Risk Precinct between Canley Vale Road

East, Gladstone Road and Sackville Street, and in localised areas on either side of Railway Parade.

Peak flood depths on most properties are less than 0.5 metres, although there are some areas in the upper catchment where depths are between 0.5 and 1.0 metres. Similarly, flow velocities across most properties are generally below 0.5 metres per second, although higher velocities are seen in many streets and across some upper catchment properties.

A "Zone of Significant Flow" has also been identified where it is important that overland flowpaths are kept clear. It contains much of the 100 year ARI extent in the upper catchment, where flowpath blockage caused by fences, large buildings and debris can significantly increase water levels and divert water onto nearby properties.

These maps only represent flooding due to runoff from within the Canley Corridor catchment. Those parts of the Corridor along the banks of Orphan School Creek may also be at risk from mainstream flooding, generated in the upper Orphan School Creek catchment to the north and west of the Canley Corridor. Mainstream flood extents for Orphan School Creek are reported in the Flood Study for Orphan School Creek, Green Valley Creek and Clear Paddock Creek (Sinclair Knight Merz \& Fairfield Consulting Services, 2008).

1. Introduction

1.1 Overview

Fairfield City Council (FCC) commissioned Sinclair Knight Merz (SKM) in August 2005 to undertake an Overland Flood Study for the Canley Corridor area to define flood behaviour, identify properties at risk of flooding and to map the flood risk. The study was to be undertaken in accordance with the NSW Government's Flood Prone Lands Policy as documented in the 2005 Floodplain Development Manual. This study was undertaken by SKM in association with Fairfield Consulting Services (FCS), a business unit division of FCC.

The manual focuses on providing direction and solutions to existing flooding problems in developed areas, to ensure new developments are compatible with flood hazard and do not create additional flooding problems in other areas. The manual also gives guidelines for the implementation of a floodplain risk management process. It now adopts as a matter of policy consideration of the full range of flood events beyond the 100 year and up to the Probable Maximum Flood (PMF). The 2001 manual was also the first to address local overland flow as a significant problem that should be considered alongside mainstream river and creek flooding.

1.2 Structure of this Report

This report is structured as follows:

- Section 1 - Introduction
- Section 2 - Background: Explanation of the need for this overland flow study, of Fairfield's overland flow study program, the situation of this study area, the study objectives, and the history of flooding in the catchment
- Section 3 - Available Data: Overview of the data collection process for this study
- Section 4 - Catchment and Stormwater Model Development: Explanation of the development of the different hydrological and stormwater modelling approaches used in this study
- Section 5 - Hydraulic Modelling: Background to the development of the two-dimensional hydraulic model used in this study
- Section 6 - Sensitivity of Hydrological Modelling: Evaluation of the different hydrological and stormwater modelling approaches and comparison of their results
- Section 7 -Flood Mapping Results: Use of the study modelling to derive flood extent mapping and flood risk precinct mapping
- Section 8 -Conclusions: Key conclusions from the study regarding modelling methodology and results.

2. Background

2.1 Context of Overland Flood Studies

Fairfield LGA covers an area of around $102.5 \mathrm{~km}^{2}$ and approximately 191,000 people live in the municipality according to the 1999 census report. Within the LGA there are typically old watercourses and tributaries that have been piped over the years. Unfortunately, most of the flow paths are in urban areas with direct impact and potential for damage to properties and hazard to residents.

The NSW Floodplain Development Manual (2005) discusses the different types of local flooding problem and concludes that it is a matter of scale. At the lower end of the scale, minor flooding may result from a number of sources including blockage of drainage pits and pipes. At the upper end of the scale, major flooding can occur due to water flowing along natural floodways or across land due to the runoff exceeding the capacity of the trunk drainage system.

FCC has been using the information available in drainage complaint registers, drainage studies, mapping of the major trunk drainage systems, etc. to identify 'major' flow paths within the LGA. Currently FCC advises property owners affected by overland flooding by way of notification on Section 149 (2). In addition, there is a reference on the Section 149 (2) Certificate that advises further information is available on the Section 149 (5) Certificate. The additional information such as flood levels is given through a "Flood Information Sheet" which is attached to the Section 149 (5) Certificate only. However, FCC is concerned that insufficient information is available to adequately identify overland flooding and the properties that may be affected because of local overland flooding. FCC is also concerned about the potential legal exposure that may accompany this situation. FCC is also required to manage the risk of overland flooding as required by the NSW Government's floodplain risk management policy.

Identifying properties at risk of overland flooding within the entire LGA is a major undertaking. Instead of undertaking the study for the entire LGA in one step, FCC decided to undertake the overland flood study in a number of stages.

2.2 FCC Overland Flood Studies Program

FCC has identified 31 creeks and overland flow paths within the LGA, which still require assessment to determine flood levels, areas inundated and identification of flood prone properties. Flood prone properties near the major creeks have been identified from previous flood studies but the location of major overland flow paths and the risk posed by them is not well understood.

In 2003-2004, SKM undertook the Fairfield City Overland Flood Study (SKM, 2004). This was a preliminary assessment of the urban areas within the Fairfield Local Government Area (LGA).

The study divided the LGA into eighteen sub-catchments and ranked each sub-catchment in terms of the potential severity of overland flooding (i.e. the number of properties under the high hazard category for the 1% AEP storm event).

The Canley Heights sub-catchment (Subcatchment No.15) was ranked 4th out of the 18 subcatchments identified across the city in the preliminary Overland Flood Study. Approximately 116 properties were identified as flood liable in this sub-catchment in the study, with 108 of these properties being classified as high hazard. Currently there are 148 complaints on the local flooding complaints database.

This detailed study will identify the scale of the problem at the local level. FCC is also currently engaged in an urban renewal study to the two town centres of Canley Heights and Canley Vale and the corridor linking the two (Canley Corridor). The existing risk and future risk due to potential increases in imperviousness of the catchment, the increased density of population and the need for setting development controls needs to be assessed urgently. For these reasons FCC chose to undertake a detailed study of the Canley Corridor as the first of a series of detailed overland flood studies in the Fairfield LGA.

2.3 Study Objectives

Key objectives of this study are:

1) To test the sensitivity of overland flood modelling using different assumptions of the capacity of the existing stormwater drainage system. It will compare the drainage system at different levels of detail, and evaluate the benefit provided by increasingly detailed models. Conclusions from this study will establish the methodology of subsequent studies for the remainder of the LGA catchments
2) To identify the major overland flow paths within the Canley Corridor catchment study area. The study area is detailed in Section 2.4 and includes parts of sub-catchments 13, 14, 15 and 16 as identified in the preliminary city-wide Overland Flood Study (SKM, 2004). The Canley Corridor study area is shown in Figure 1-1.

Other objectives of the study are to:

- Identify properties at risk of local overland flooding
- Assess provisional flood hazard to identified properties due to local overland flooding for the 1\% AEP (Annual Exceedance Probability) and the PMF (Probable Maximum Flood)
- Carry out field verification of identified overland flow paths at selected locations
- Prepare flood extent and flood risk precinct maps for the study area for the 1% AEP and PMF events
- Produce flood results (flood level, velocity and flow) for the 5, 20, 100 ARI year and PMF events

$2.4 \quad$ Study Area

The study area for Canley Corridor Overland Flood Study is located south west of Orphan School Creek, between the suburbs of Canley Vale and Canley Heights and Cabramatta. The Canley Corridor catchment has a north easterly aspect and drains overland into Orphan School Creek, which is the main tributary of Prospect Creek.

The 258 hectare catchment has a range of land uses including residential, commercial and light industrial. The upper and mid catchment area is largely medium density residential. The lower catchment includes a range of commercial and industrial areas, separated from Orphan School Creek by an open space corridor.

The Canley Corridor extends along Canley Vale Road between Canley Vale and Canley Heights and is bounded by Orphan School Creek to the north, Railway Parade, Pevensey Street and Sackville Street to the east, St Johns Road to the south and the Cumberland Highway to the west. The Canley Corridor area can be divided into a number of sub-catchments. In terms of the subcatchments defined in the phase one overland flood study, the Canley Corridor includes parts of sub-catchments 13, 14, 15 and 16. The Canley Corridor study area is shown in Figure 1-1.

Initially the study focused on sub-catchment 15 . This was studied in detail and the results were then used to refine the overland flood study methodology for the remainder of the area (sub-catchments 13, 14 and 16).

- Figure 1-1: Canley Corridor and Study Area

2.5 History of Flooding

Incidence of past events in Orphan School Creek form a part of the larger Prospect Creek catchment. Major flooding occurred along Prospect Creek and Orphan School Creek in August 1986, April-May 1988 and February 2001. These floods caused serious financial losses and hardship to a large number of families and businesses in the area. The 1986 flood caused a total damage of approximately $\$ 4.8$ million on Prospect Creek alone (Willing \& Partners, 1990). The 1986 and 1988 floods produced strong community pressure for measures to control flooding in the area. Previous to this, the last known major flood in Fairfield was in 1956 (Willing \& Partners, 1990).

Generally, local flooding also occurs in flood events of this magnitude, however, there have been incidences where local flooding has occurred independently of these large flood events. These are usually flash flood events that happen within 20 minutes of a storm, therefore the response time can be quite different to the larger duration flood events. These local floods can also cause damage to property and infrastructure and place the lives of people at risk. These kinds of events happen much more frequently than larger flood events, and potentially have a cumulative impact as significant as the larger floods.

2.6 Previous Studies

In 1990, Council engaged hydraulic consultants Dalland \& Lucas to carry out a drainage study on the Canley Heights catchment (Canley Vale Cabramatta - Drainage Investigation, 1990). This study involved survey of the pit and pipe network throughout the catchment. Major overland flowpaths were identified and the peak 20-year and 100-year ARI flows were calculated in each section of overland flowpath. An ILSAX model was used to conduct this exercise, and while the model itself is no longer available, a summary of the basic input data and results has been retrieved in hard copy format.

The 1990 study only identified major overland flowpaths that carried more than 1 cubic metre per second in the 100 -year storm event. Given the technology of the time it was not possible or cost effective to be able to quantify the width, depth and extent of these flow paths.

In April 2003, FCC commissioned SKM to undertake a Stage 1 of the Local Overland Flood Study for the entire catchment area of Prospect Creek and Cabramatta Creek. This study was undertaken jointly by SKM and Fairfield Consulting Services (FCS) (SKM, 2003).

This city-wide study identified 31 creeks and overland flow paths within the LGA, which need to be assessed to determine flood levels, areas inundated and identification of flood prone properties. Flood prone properties near major creeks have been identified from previous flood studies, but until this study, the location and risk posed by the major overland flow paths were not as well understood. FCC has been using the information available in the 1990 study, the drainage
investigations database, mapping of the major trunk drainage systems, and anecdotal evidence to estimate the scale of the problem.

The objectives of the study were to:

- identify major overland flow paths;
- identify properties at risk of local overland flooding; and
- assess flood hazard and identify properties subject to local overland flooding for the 5\%, 1% and PMF events.

The outcome of the first phase city-wide study identified 18 sub-catchments based on hydraulic hazard. Ranking of the sub-catchments was based primarily on the number of properties under the high hazard category for the 5\% AEP flood event. Secondary consideration was given to the number of properties under the high hazard category for the 1% AEP in the overall ranking. The Canley Heights catchment is ranked No. 4 in priority, regardless of whether the 5% or 1% event is used.

2.7 Overview of Study Methodology

One of the key objectives of this study was to test the sensitivity of overland flood modelling to different assumptions about the capacity of the existing stormwater drainage system. This was done by comparing the modeling outcome when the drainage system was represented at different levels of detail. This allowed an evaluation of the benefit provided by increasingly detailed models. Conclusions from this study are now helping to establish the methodology of subsequent studies for the remainder of the LGA catchments.

The overall approach was to establish three different models representing part of the study area (Subcatchment 15) in different ways. The modelling approaches used were:

- Detailed DRAINS hydrological and stormwater system modelling: This approach involved representing almost all pits and pipes in the subcatchment within the DRAINS model, identifying subcatchment areas for each pit or set of pits, and using the model to calculate the overflow at each pit due to either pipe capacity or inlet limitations. This overflow was then used as input to the hydraulic model.
- Limited DRAINS hydrological and stormwater system modelling: This approach was similar to the Detailed DRAINS modelling, except that only pipes greater than or equal to 900 mm diameter and pits connected to these pipes were included in the model.
- RAFTS hydrological modelling: This approach involved setting up an RAFTS model of all the subcatchments represented in the Limited DRAINS model, and using the resulting subcatchment runoffs as input to the hydraulic model. This model did not include any representation of the stormwater system.

These overflows from the hydrological models were used as inputs into a detailed TUFLOW twodimensional model of the catchment area represented by the modelled pit and pipe network. The overflow time series were placed onto the two-dimensional grid at the location of the pit in the stormwater system network.

This process was carried out for a range of storm durations. As the hydraulic model covers the extent of the pit and pipe network, different points in the catchment will have different critical storm durations.

Once these overflow series were routed across the terrain in the two-dimensional model, a grid of maximum depth and velocity across all storm durations was prepared for each of the three modelling approaches. This was then used to calculate the Provisional Hydraulic Hazard Categories as specified in the NSW Floodplain Development Manual (2005). Flood extent and provisional hydraulic hazard were used as the basis for comparing the three different approaches.

3. Available Data

The following data were collated and reviewed to identify any gaps in the data:

- Airborne Laser Survey (ALS);
- AusImage Aerial photography;
- SKM Building Polygon data set;
- 0.5 m digital contours;
- Digital FCC Cadastre and Fairfield Local Environment Plan (LEP);
- GIS layer of drainage pits and pipes and FCC drainage design plans ;
- Rainfall Data from Australian Rainfall and Runoff and FCC for input into the DRAINS model;
- Fairfield City Overland Flood Study (SKM, April 2004); and

The relevance and use made of the data is described below.

3.1 Airborne Laser Survey

The ALS data that was used in this study was collected for the entire LGA in January 2003. The thinned ground points were used. Following initial data collection, a data reduction process was undertaken to reduce the density of the points. Also, removal of non-ground points was carried out. This included the removal of levels on buildings, bridges and over/underpasses.

A validation process was carried out on this data at the outset of this study, by generating 0.5 m contours over the area and ground-truthing 100 random points over the data area.

The ALS and 0.5 m contours were used in the following stages of the study:

- Calculation and validation of pit and pipe attributes (ie. depths, invert levels and slopes) for input into the DRAINS and TUFLOW models
- Initial definition of sub-catchment boundaries and calculation of runoff travel times
- Set up of the hydraulic Tuflow model
- Validation of selection of potentially affected properties
- Preparation of flood inundation and hazard maps.

3.2 AusImage Aerial Photography

Aerial Photography was used extensively in this study, mainly for data validation. The aerial photography that was used was flown for FCC by SKM in January 2005. This photography was at a resolution of 0.15 m . The photography was used in the following stages of the process:

- Validation of pit and pipe locations in the digitising of the pit and pipe GIS layers SINCLAIR KNIGHT MERZ
- Definition and validation of sub-catchment boundaries and catchment parameters (particularly pervious/impervious fraction)
- Set up of the hydraulic TUFLOW model
- Validation of selection of potentially affected properties
- Estimation of clear width of the overland flow path
- Preparation of flood inundation and hazard maps
- Presentation of results.

3.3 SKM Building Polygon Data Set

This study also made use of a data set containing building polygons that had been generated by SKM. This data was generated by on-screen digitising of buildings from the AusImage aerial photography. The 2005 photography was also used in this process.

As part of the same process trees, parks and open areas, and hard-stand areas were also digitised. This data as well as the FCC cadastre and LEP information in GIS were used in the calculation of impervious and pervious fractions for catchment areas.

3.4 Drainage Information Dataset

Historical stormwater drainage network data and site validation was used as the basis of the models for this project. Site validation was required to ensure pit and pipe locations were as close as possible to actual locations.

In 1986, FCC used people from a Government assisted employment scheme to collect stormwater pit and pipe locations and sizes for FCC's stormwater system throughout the Fairfield LGA. This information was copied onto A1 film sheets at a scale of 1:2000. The data collected was not verified by Council's engineers. The sheets were then indexed into approximately 20 individual sheets. In the early 1990's FCC subsequently digitised these drainage maps into a "Drainage Layer" database for use in its Land Information System (LIS).

In 1990 the "Canley Vale - Cabramatta Drainage Investigation" was undertaken by consultants Dalland and Lucas. This study was a large scale detailed catchment analysis using the ILSAX hydrological model. Extensive ground surveying took place as part of this study to record stormwater pit locations, pit inverts and pipe diameters.

It was intended to use the Dalland and Lucas study data in the Canley Corridor Overland Flood Study. Initially it was not known whether the LIS "Drainage Layer" was consistent with Dalland and Lucas' plans. To ensure an approach consistent with the Dalland and Lucas study it was decided to digitise the pit and pipe network from the available plans. FCS scanned the Dalland and

Lucas drainage pit and pipe maps, registered them into MapInfo (GIS software used by FCC) and overlayed the scanned registered plans onto FCC’s LIS Drainage Layer. The maps matched FCC’s LIS Drainage Layer (i.e. the 1986 data). However, the project team decided that this data was not accurate enough to construct a detailed hydrological and stormwater system model.

Consequently on-site data collection was undertaken to increase the accuracy of the existing drainage system data. With use of 2005 aerial photos and on-site ground-truthing, the locations of the pits and pipes were moved to their correct locations in the LIS Drainage Layer. The only exceptions to this were 190 buried junction pits or pits on private property, which could not be accessed. The existing location of these pits in the LIS Drainage Layer had to be assumed.

For the study catchment area of 285.86 hectares, a total of 780 pits were digitised for the Detailed DRAINS model and 260 pits for the Limited DRAINS model. The Dalland and Lucas study included limited data for only around 600 pits of the catchment pits.

3.5 Cadastral and LEP information

The cadastral and LEP data was used in this study to help calculate impervious and pervious fractions for catchment areas in the presentation of results.

3.6 Previous Studies

The local drainage study Canley Vale-Cabramatta Drainage Investigation (Dalland \& Lucas, 1990) report was available to use in this study. The pit and data information from the Dalland \& Lucas study were compared with the on-ground information validated by FCC staff. A number of pit inverts and pipe sizes surveyed in the Dalland $\&$ Lucas study were used in the DRAINS model.

Data from the SKM (2004) Fairfield City Overland Flood Study was used initially to obtain the catchment boundaries for Catchments 13, 14, 15 and 16 that were delineated in the SKM study using a ground surface elevation digital terrain model (DTM).

3.7 Record of Historical of Overland Flow Problems

FCC has kept a record of 'troubles spots' where the public has identified past surface flooding problems. This record includes a number within the Canley Corridor study area.

Based on investigations into these problem areas, FCC has subsequently developed tables of properties historically affected by overland flooding. These are used by FCC as input into the planning and development control system.

Both these datasets have been made available for the study. They were used to verify the accuracy and extent of the flood modelling and mapping.

3.8 Design Rainfall Data

This study uses design rainfall intensity - duration curves derived for 33.875 degree South and 150.925 degrees East (near Fairfield), issued April 1997 by the Hydrometeorological Advisory Service of the Bureau of Meteorology.

4. Catchment and Stormwater System Model Development

4.1 Overview

A key objective of this study was to test the sensitivity of overland flood modelling to different assumptions of the capacity of the existing stormwater drainage system. The study compares the drainage system at different levels of detail and evaluates the benefits of increasingly detailed models. By comparing the outcomes of different modelling approaches and levels of detail, Council will be provided with guidance on:

- Choosing appropriate subcatchment sizes;
- Deciding whether to model the entire pit and pipe system, or whether it is sufficient to model only the larger parts of it;
- The potential error that arises when the drainage network is not modelled; and
- Using past flooding information to set the extent of modelling.

Conclusions from this study are now being used to establish methodologies for studies in the remainder of FCC catchments.

Three modelling options were investigated for this study. Two models were set up using the DRAINS hydraulic modelling software that includes the drainage system. One DRAINS model represents the entire drainage system, while the second includes only larger pipes and associated pits. The third approach was creation of an RAFTS hydrological model that excludes the drainage system. Outputs from both these models were then input into a TUFLOW hydraulic model of the catchment, and the results from the different approaches compared.

4.2 Model Calibration and Verification

The nature of overland flow studies means rigorous model calibration and verification cannot be carried out. Records of historical flooding generally only include peak levels measured after the flood has passed, for which there is no accurate way of estimating flows. In addition, urban floodplains change continuously as development rebuilding occurs, making modelling the local conditions which have caused past flooding unreliable.

FCC has maps showing past flooding 'trouble spots', which identify the location of known problems. These maps have been used to in this study to provide some check on the performance of the model, and as an indication of whether the two dimensional hydraulic model extends far enough into the catchment. This comparison is documented in Section 6 of the report.

4.3 DRAINS Model

4.3.1 Approach

DRAINS models of Subcatchment 15 in Canley Corridor were developed to:

- Represent the subcatchment at a detailed level (the'Detailed' model): This included modelling every pit and pipe, and every subcatchment at a corresponding scale. The layout of this Detailed DRAINS model is shown in Figure 4-2. Stormwater pits are represented by purple dots, and subcatchments are represented by blue polygons.
- Represent the subcatchment at a coarser scale (the ‘Limited’ model): Only pipes greater than or equal to 900 mm and associated pits were included in this model. The corresponding pits are shown in red in Figure 4-3. The figure also shows the aggregation of subcatchments to match the reduced extent of the modelled network. The inlet capacity of the pits was also altered to match the inlet capacity of the Detailed DRAINS model.
The output from the DRAINS models is an overflow hydrograph at each local catchment, or at each pit in the downstream stormwater system. The structure in the DRAINS model used to produce these outflows is shown in Figure 4-1. These overflow hydrographs were then incorporated into the TUFLOW hydrodynamic model as point inflows onto the grid.
- Figure 4-1: Example of DRAINS model structure

DRAINS was chosen for this project as it has the capacity to simulate the small scale urban subcatchment hydrology, as well as the hydraulics of the stormwater pit and pipe system. DRAINS is a Stormwater Drainage System design and analysis program, co-developed by Watercom and Dr. Geoffrey O'Loughlin, developer of the ILSAX program. It is a much advanced version of the earlier ILSAX program which has been widely used in the past for urban stormwater system design
and analysis in Australia and New Zealand. The DRAINS program can perform hydraulic grade line analyses, design stormwater drainage systems and produce summary graphs and tables, and pipe long section drawings.

4.3.2 Drainage Network Layout

FCS carried out extensive on-site validation of its digital stormwater network data prior to developing the DRAINS models. For the study catchment area of 285.86 hectares, a total of 780 pits were digitised for the Detailed DRAINS model and 260 pits for the Limited DRAINS model. The validation and data management process used for the stormwater system data entered into the Detailed DRAINS model was:

- Pipe diameters were validated by comparing the Dalland and Lucas data against Council's drainage layer and available Works as Executed (WAE) plans.
- The above validation process was also used to obtain the pit invert levels.
- Pipe lengths were calculated in MapInfo.
- A number of pipe upstream invert levels were included in the Dalland and Lucas data set. Downstream invert levels (and therefore, pipe slopes) were generally estimated on the basis that the downstream invert level is likely to be the same as the upstream invert level of the next pipe downstream. This presented a problem where a small pipe joined with a large pipe. Generally designers make this a drop from the smaller pipe into the larger pipe. In these occasions, the inverts had to be changed to avoid getting a false grade (i.e. negative grades or unacceptable pipe slopes).
- Council’s Airborne Laser Survey (ALS) data was used to determine natural surface elevations near pits and to help calculate assumed pit inverts for the numerous numbers of non-accessible pits. A minimum cover of 600 mm to the obvert of the pipe was assumed to calculate the pit inverts where Dalland \& Lucas data was incorrect or not available.
- Any missing pit and pipe sizes and levels were estimated based on the configuration of the surrounding system or a conservative assumption where no information was available.
- A worksheet of the pit and pipe data was created with columns which included Dalland and Lucas data. The Dalland and Lucas data was then compared and validated in this spreadsheet and changed where required.
- This data was added to the GIS, using the pit names as a key
- Figure 4-2: Layout of Detailed DRAINS model (showing subcatchments and inflow boundaries from DRAINS to 2D hydraulic model)

- Figure 4-3: Layout of Limited DRAINS and RAFTS models (showing subcatchments and inflow boundaries to 2D hydraulic model)

SINCLAIR KNIGHT MERZ

4.3.3 Network Parameters

The layout, dimensions and levels of the stormwater network were extracted from the GIS layer prepared by FCS and imported into DRAINS (as discussed in Section 3). Once the network had been imported the DRAINS model parameters were set. Parameter values were chosen on the following basis:

- Standard pressure loss K_{u} parameters were used for the pits, based on whether they were at the head of a stormwater line (where a value of 4.8 was used) or a junction or inlet pit (where a value of 1.5 was used). The DRAINS User Manual (2004) was used as a reference for these values.
- A minimal amount of ponding at each sag pit was assumed ($5 \mathrm{~m}^{3}$) in order to ensure stability of the DRAINS models. The actual storage volume within the street is more accurately represented within the TUFLOW model.
- The pit hydraulic characteristics were assumed to be similar to standard characteristics referenced in the DRAINS User Manual (2004), as FCC does not have its own standard pit characteristic. Pits were grouped into the following sizes:
- Hornsby Council pit database: 0.9, 1.2, 1.8, 2.4, 3.0, 3.6, 4.2 m (internal dimensions)
- Sutherland Council’s "Grated Sag" pits were selected for the sag pits
- Department of Housing RM7 3\% cross fall 4% grade pits were selected for the bolt down lid pits.
- Blocking factors for on-grade and sag pits adopted for the model were 30% in the 20 -year ARI and 50% in both the 100 -year and PMF events.
- For the limited DRAINS model, extra inlet capacity was included at the upstream end of each major drainage line in the model. This accounted for the reduction in inlet capacity resulting from pipes smaller than 900 mm diameter and their associated inlet pits being removed from the model. This avoids this artificial constraint on system inlet capacity.
A summary of the pit data for the Detailed DRAINS model is included as Table A1 in Appendix A. A summary of the corresponding pipe data is included as Table A2.

4.3.4 Catchment data

The catchments were initially delineated on the basis of the ALS data, using an automatic subroutine in ArcMap. The automation using this process was felt not to best delineate the existing catchment contributing areas. By using the natural surface to define a contributing catchment, the process may not:

- delineate the catchment areas to the appropriate pits
- pick up potential flooded areas that are bypassed
- recognise the road centreline as a crest (centrelines of roads define weirs and potential areas of ponding and flood water diversion)
- correctly represent the hydrologic processes

To define road centrelines, the automated process would require a break-line to be inserted into the DTM for it to recognise that it cannot cross it.

It was decided that the catchments be defined manually, validated in the field and digitised in GIS.
Rather than defining catchments for every one of the 780 pits in the study area, critical pits were selected for both the detailed and limited DRAINS models. The placing of critical pits in select locations was essential in having the proper overland flow accounted for. The critical pits were selected based on local knowledge of the study area, anecdotal evidence of problem areas and at most sag pits where ponding problems would occur.

Once the catchment boundaries were finalised in the GIS, the following parameters were measured and/or estimated for each catchment:

- Catchment areas were measured in the GIS
- Impervious fractions were estimated using SKM's building polygon data set to define areas of different land uses in each catchment, plus estimated typical impervious fractions for each land use category. A check was then made that the overall catchment impervious fraction remains consistent with that used in the previous broad overland flowpath study
- Runoff travel times were estimated based on the length of each catchment and an estimated flow velocity (based on the slope, surface roughness, etc.)
- The catchment data was imported into DRAINS via spreadsheet so that a catchment is defined at every pit. The DRAINS data was then exported into GIS for input into Tuflow.

A summary of the catchment data for the Detailed DRAINS model is included as Table A3 in Appendix A.

4.3.5 Overland flowpaths

An overland flowpath was defined from every pit in the DRAINS model. Instead of travelling to the next downstream pit (which is the normal practice), overland flows actually leave the model. The DRAINS model was set up so that each of these overland flowpaths travel to a dummy node next to each pit, as overland flow routing and flowpath analysis will take place in TUFLOW rather than in DRAINS. TUFLOW reads these individual exported hydrographs and feeds them into the DTM where it adds it to the next individual node.

A default travel time of 0.1 minutes was defined for each of these overland flowpaths.

Initially, DRAINS was only capable of exporting one hydrograph at a time. This was a problem which was taken up with Watercom. FCS engaged Watercom to add a module in DRAINS to extract the overflow route and pipe hydrographs in one step. DRAINS can now export ASCII hydrograph files suitable for importing into 2D models such as TUFLOW. It will export 3 files per storm: one for pipes, one for overflow routes and channels, and one for sub-catchments. The module does not perform any calculations to create a "local" hydrograph if the overflow routes are connected from pit to pit in DRAINS.

4.3.6 Rainfall data

Temporal patterns for the synthetic design storms were derived from Book 2 of Australian Rainfall and Runoff (IEAust, 1999). FCC has developed its own Intensity-Frequency-Duration curve for the Fairfield LGA using rainfall data sourced from the Bureau of Meteorology, 1987. Adoption of these standard values was considered desirable for consistency with other local studies that have been undertaken. Table 4-1 details the range of design storm events which were run in DRAINS.

- Table 4-1: Storm Events set up in DRAINS

ARI	Duration
5 yr	$10,20,25 \& 45 \mathrm{~min}, 1,1.5,2,3,4.5 \& 6 \mathrm{hr}$
20 yr	$10,20,25 \& 45 \mathrm{~min}, 1,1.5,2,3,4.5 \& 6 \mathrm{hr}$
50 yr	$10,20,25 \& 45 \mathrm{~min}, 1,1.5,2,3,4.5 \& 6 \mathrm{hr}$
100 yr	$10,20,25 \& 45 \mathrm{~min}, 1,1.5,2,3,4.5 \& 6 \mathrm{hr}$
PMF	$15,30 \& 45 \mathrm{~min}, 1,1.5,2,2.5,3,4,5 \& 6 \mathrm{hr}$

For the PMP storm, the intensities were entered manually into the DRAINS rainfall data area as per normal. However, rainfall data on any catchments that fell outside of the central ellipse ("Ellipse A") were entered on the individual catchment data as a "customised storm".

Appropriate soil type and antecedent moisture conditions, as well as other catchment-wide parameters, were selected for use in the DRAINS model. An antecedent moisture content of 3 was adopted for the standard flood events and this was increased to 4 for the PMF event, as the catchment would be fully saturated.

4.3.7 Estimation of PMP Storms

The Probable Maximum Precipitation (PMP) for the Canley Corridor catchment was derived using The Estimation of Probable Maximum Precipitation in Australia: Generalised Short Duration

Method (Bureau of Meteorology, 2003). The PMP was estimated using the GSDM procedure, and was spatially distributed through the ellipses that covered the catchment, using a step function approach. The mean values found for each PMP storm and ellipse are detailed in Table 4-2. The catchment is 90% smooth and 10% rough. It also had an elevation adjustment factor of 1 and a moisture adjustment factor of 0.7 .

Table 4-2: Mean PMP rainfall depth between ellipses (mm)

	Catchment	Rainfall Event (hrs)										
	$\left(\mathbf{k m}^{2}\right)$	0.25	0.5	0.75	1	1.5	2	2.5	3	4	5	6
$\begin{aligned} & \hline \text { Ellipse } \\ & \text { A } \end{aligned}$	2.16	165	238	298	347	400	453	480	511	561	609	636
Ellipse B	0.61	149	222	282	331	384	437	464	494	545	578	620

4.3.8 Development of the Limited DRAINS model

Once the Detailed DRAINS model had been developed, this was used to develop the Limited DRAINS model. The Limited DRAINS model only includes "major" pipes and their associated pits. For the study, the major pipes were defined as all pipes greater than or equal to 900 mm diameter. In addition, the Limited model represents subcatchments at a coarser scale than the Detailed DRAINS model, as shown in Figure 4-3.

The Detailed DRAINS model was modified to form the Limited DRAINS model as follows:

- Pipes smaller than 900 mm diameter and associated pits were removed from the model;
- The most upstream remaining pit inlet on each stormwater network branch had its capacity increased, to represent the combined capacity of the pits omitted from the Limited DRAINS model;
- The pit sub-catchments upstream of this point were merged in GIS and the DRAINS model;
- Subcatchment runoff times were modified to account for the updated model layout and slower overland travel times resulting from removal of pipes from the model;
- Impervious and pervious areas were updated to reflect the new subcatchment boundaries;
- No blockages were included in the artificially large inlet pit at the upstream end of the system, although all other pits in the system were blocked as in the Detailed DRAINS model
- The DRAINS model was re-run with this limited data.

Alteration of the catchment runoff travel times in the Limited DRAINS model was estimated using either:

- expected pipe flow times and overland flow times within the extended subcatchment; or
- gutter travel times and expected overland flow times.

A sample catchment using both methods was carried out. This confirmed that taking into account travel times through the pipe network resulted in contributing catchment times shorter than those estimated using overland flow travel times alone. For this study, the latter method was adopted as it more closely represents what will happen within the Canley Corridor catchment.

Summary tables of the pit, pipe and subcatchment data for the Limited DRAINS model are included in Tables A4, A5 and A6 of Appendix A.

4.4 RAFTS Model

4.4.1 Overview

The third hydrological modelling approach investigated in this study was using RAFTS to model individual subcatchments. This approach involved development of a model at a similar scale to the Limited DRAINS model, but without representation of the stormwater network. In the RAFTS model all runoff from the catchment is assumed to flow overland. As such, this model illustrates whether flood mapping results are sensitive to the inclusion of the stormwater system network in the modelling.

The RAFTS model produces output hydrographs at the same locations as the Limited DRAINS model. These were used as inputs to the same TUFLOW model used for the DRAINS modelling.

XP-RAFTS (or RAFTS) is a non-linear rainfall-runoff flood routing model developed by XP Software (XP-RAFTS User Manual, 2001). RAFTS models hydrological processes in a different way to DRAINS. A number of the subcatchment parameters developed for the DRAINS models were re-used directly in the RAFTS model, however some have had to be adjusted to take into account the differences in the model processes.

A summary of the model parameters used in the subcatchments is included as Table A7 in Appendix A.

4.4.2 Subcatchment delineation

Limited DRAINS catchment areas were used to produce RAFTS catchments. These are the subcatchments shown in Figure 4-3. Unlike the Limited DRAINS model, for each subcatchment there is only one inflow node from the RAFTS model into the two dimensional TUFLOW flood model.

The impervious and pervious proportions are modelled separately in each of the subcatchments. A different set of rainfall loss and surface roughness parameters are used for each area, and separate runoff hydrographs are generated for each impervious and pervious subcatchment. This enables the model to distinguish between the rapid response of the impervious area and the slower response of the pervious areas.

4.4.3 Rainfall losses

RAFTS uses a simple initial and continuing rainfall loss model. This assumes an initial depth in millimetres is lost from the rainfall, and that no runoff occurs until this loss is satisfied. Once this depth has been lost, the model continuously losses a certain depth per hour from the rainfall that falls onto the subcatchment. By comparison, DRAINS uses the Horton infiltration model. This uses soil type and antecedent moisture condition parameters to calculate a time varying infiltration rate that decreases as the storm progresses.

In this study the RAFTS initial and continual losses where chosen to reproduce the observed loss behaviour of the DRAINS model. As one of the key objectives of this study is hydrological model comparison, the loss in the two types of model should be a similar as possible, in order to reduce the effect this has on the overall conclusions of the study.

For the RAFTS model in this study the following loss parameters were used:

- In pervious areas an initial loss of 10 mm and a continuing loss of $6 \mathrm{~mm} / \mathrm{hr}$
- In impervious areas an initial loss of 0 mm and a continuing loss of $0 \mathrm{~mm} / \mathrm{hr}$

4.4.4 Surface roughness parameters

For the DRAINS hydrological model, surface roughness (Mannings n) is used to calculate the travel time to the concentration point of the catchment. In RAFTS, surface roughness is used in a different form ('Pern', XP-RAFTS User Manual, 2002), to determine the amount of storage within a subcatchment, affecting the routing of flows. Surface roughness values were adjusted in the RAFTS model to reflect this.

For the RAFTS model in this study the following surface roughness 'Pern' parameters were used:

- In pervious areas a value of 0.025 was used
- In impervious areas a value of 0.015 was used.

SINCLAIR KNIGHT MERZ

4.4.5 Vectored Slopes

Vectored slopes estimates are required for RAFTS models, in order to estimate subcatchment storage and routing. Subcatchment peak runoff in RAFTS is very sensitive to vectored slope, especially where catchments have variations in topography across their surface.
Vectored slope was estimated using the detailed topographic grid of the catchment derived using ALS data. The calculation of the slope was carried out as specified in Australian Rainfall and Runoff (1998).

5. Hydraulic Modelling

5.1 Overview

Two dimensional modelling is used in this study to quantify the difference between the different hydrological and stormwater system models, and to provide flood mapping outputs.

Two dimensional hydraulic modelling software takes overflow hydrographs from the DRAINS and RAFTS models, routes them across the catchment topography. This allows direct comparison of the flooding predicted by each of the three hydrological and stormwater modelling approaches.

Following completion of this comparison, the flood modelling results will be used to prepare flood mapping and flood risk precincts for Canley Corridor.

5.2 Modelling Software

TUFLOW (Two-dimensional Unsteady FLOW) is combined two-dimensional (2D) and onedimensional (1D) flood and tide simulation software. It simulates the hydrodynamics of water bodies using 2D and 1D free-surface flow equations. TUFLOW is specifically orientated towards establishing flow patterns in coastal waters, estuaries, rivers and floodplains where the flow patterns are essentially 2D in nature and cannot or are difficult to represent accurately using a 1D network model.

5.3 Model Setup

5.3.1 Background

The TUFLOW model for this study is based on a larger scale mainstream flood model developed for three tributaries of Prospect Creek, including Green Valley Creek, Orphan School Creek and Clear Paddock Creek. The Canley Corridor model utilises part of the larger model between Orphan School Creek and Green Valley Creek watercourses. The Canley Corridor area drains towards the north east into Orphan School Creek. In the three tributaries model, Orphan School Creek is represented as a one-dimensional watercourse, and this aspect of the three tributaries model has been preserved unchanged in the Canley Corridor model.

5.3.2 Digital Terrain Model

The topography of the catchment is represented in the model using a two metre grid. This level of precision in the grid was considered necessary in order to represent detailed flood behaviour in a fully developed residential catchment. Representing individual buildings and roads requires a fine grid structure, with grid spacing at least as small as typical opening between properties, and able to represent the full flow width of the road. The basis of the topographic grid used in the TUFLOW model is an ALS survey carried out by FCC. Figure 5-1 shows ground elevations within the Canley Corridor catchment based on this data.

5.3.3 Building Polygons

This study has treated buildings as solid objects in the floodplain, within which floodwater cannot flow or be stored. This means that buildings form impermeable boundaries within the model, and that while water can flow around buildings, it cannot flow across their footprint.

This is considered more realistic than including these areas within the active floodplain. While some floodwater may enter buildings during a flood, in an overland flow with the depths expected at Canley Corridor, this volume is not considered to be significant. In addition, the limited depths expected makes it unlikely that most large buildings would collapse.

The buildings were removed using a GIS dataset of building polygons generated by SKM. This was superimposed on the model grid, and used to make model computational cells inactive. Figure 5-2 shows a sample from the catchment of this building polygon dataset.

5.3.4 Property Fencelines

Fencelines have not been included in the model, and floodwater can flow across them freely. Fences may be an important obstruction to overland flood flows in some parts of the catchment, and the potential effect is considered in later in Flood Results section of this report. However, the data collection and model development required to accurately represent individual fences would have significantly increased the scope of the study. Including fence lines would have required onsite identification of fence type, blockage and structural strength for individual properties. In addition, representing fences in the hydraulic model requires making unvalidated assumptions about depths at which fences overflow or fail.

5.3.5 Surface Roughness

All parts of the catchment within the TUFLOW model were assigned hydraulic roughness values according to land use types. These are based on standard reference values for Mannings n (Chow, 1959)

- Table 5-1: TUFLOW Model Grid Hydraulic Roughness Values

Land Use Type	Assumed Mannings n Roughness
Roads or Car parks	0.02
Commercial / Industrial / High Density Residential	0.2
Open Space (with trees)	0.05
Open Space (grass only)	0.035
Medium and low density Residential	0.15
Heavily vegetated areas	0.1

5.3.6 Boundary Conditions

The TUFLOW model has three sets of boundary conditions, representing fluxes into and out of the hydraulic model. These boundary conditions are:

- Overland Flow from Hydrological / Stormwater Models: Overflows from the DRAINS models and subcatchment flows from the RAFTS model are applied to the TUFLOW model grid. The generation of these flows is discussed in Section 4. The inflow series are applied as point inflows directly onto the grid. Applying inflows onto a two-dimensional grid in this way can overestimate the depth of the flooding at particular points. However, in this instance the subcatchments are relatively small, and the error associated with this simplification was found to be small.
- Orphan School Creek Inflows: Orphan School Creek runs along the northern edge of the Canley Corridor model. The Canley Corridor catchment drains overland into the creek, as can be seen from the terrain model in Figure 5-1. Consequently, Orphan School Creek acts as a hydraulic boundary to the overland flow flood outlines being prepared for this study. The creek itself is represented as a one-dimensional part of the TUFLOW model, however the inflow at the upstream end and water level at the downstream end have to be specified as boundary conditions. It is not intended to reproduce the Orphan School Creek flood extents exactly, as has been done as part of the FCC mainstream flood study of the three tributaries. However in order to apply a realistic boundary at the creek, inflows into Green Valley Creek and Orphan School Creek have been taken from the three tributaries model and applied to the Canley Corridor model. Inflow hydrographs were taken from the three tributaries model for the 30 minute, 1 hour, 90 minute and 2 hour storm events.
- Orphan School Creek Downstream Boundary: The downstream boundary of the onedimensional Orphan School Creek part of the model is a time series of water levels near the Orphan School Creek and Prospect Creek boundary. The water level time series was extracted from the Prospect Creek Floodplain Management Plan and Flood Study Review (Bewsher Consulting, March 2006). The time series available which were suitable for use in conjunction with the Canley Corridor model were the 25 minute and 2 hour duration events. The 25 minute water level boundary was used as the downstream boundary for Canley Corridor storm events up to 1 hour duration, and the 2 hour water level boundary was used for Canley Corridor events greater than 1 hour duration.

5.3.7 Stormwater Network Representation

The TUFLOW model does not include representation of the stormwater network, or of the potential for system overflows to re-enter the pipe network. The DRAINS models calculate overflow from each pit using pit inlet capacity and pipe capacity. The overflow time series from the DRAINS models is then imported into TUFLOW. This approach means that any overflow from a pit in the DRAINS model is assumed to have no further opportunity to re-enter the stormwater system at
points further down the catchment. In reality some part of this overflow may be recaptured depending on the size and configuration of the stormwater system.

5.3.8 Hydraulic Model Calibration and Verification

As discussed in Section 4, rigorous model calibration and verification cannot be carried out for overland flow studies. However FCC maps showing past flooding 'trouble spots' have been used to in this study to provide some check on the performance of the model. This comparison is documented in Section 6 of the report.

- Figure 5-1: Two-Dimensional Model Topography of Canley Corridor Catchment

SINCLAIR KNIGHT MERZ

- Figure 5-2: Example Building Polygon Outlines in the Canley Corridor Catchment

SINCLAR KNIGHT MERZ

6. Sensitivity of Hydrological Modelling

6.1 Overview

In order to compare the three hydrological modelling approaches outlined in the study methodology, the TUFLOW model was used to route stormwater system overflows (for the DRAINS model) and subcatchment runoff (for the RAFTS model). This section outlines the results of this modelling, and summarises the conclusions drawn from it.

6.2 Peak Flood Depth

Figures 6-1, 6-2 and 6-3 show the peak depth of flooding over the storm for the Detailed DRAINS, Limited DRAINS and RAFTS models respectively. Comparison of the three figures shows the following:

- The Detailed DRAINS model shows a much wider extent of flooding. This reflects the significantly greater number of catchments, and wider distribution of inflow boundaries across the grid.
- The Limited DRAINS and RAFTS models show very similar flood extents, with the RAFTS the slightly greater of the two. The Limited DRAINS model includes the stormwater pipe drainage system, leading to lower overland flows in the 100 year ARI storm event.
- All three models generally show very similar depths of flooding along the main overland flow path, which runs from south west to north east. The less detailed models show more deeper flooding along the main overland flow route.

An enlarged view of Figure 6-1 is shown in Figure 6-4. This shows an example of an area where flooding occurs in the Detailed DRAINS model in the 100 year ARI event, but where it is not captured in the Limited DRAINS or RAFTS models.

6.3 Difference in Peak Flood Depth between Hydrological Models

In order to compare the flood depth results in greater detail, the difference in peak flood levels between hydrological models has also been calculated for the 100 year ARI 30 minute duration storm event. The resulting grids are shown in Figures 6-5, 6-6 and 6-7. In addition, an enlarged example view of Figure 6-5 shown in Figure 6-8.

For each figure, the title indicates which two results are being compared, and the plotted colours show the magnitude of the difference in peak level. An explanation of the peak flood behaviour seen in each of the figures is given in Table 6-1. The table outlines the scale of the difference between the modelling approaches, and why this arises.

- Figure 6-1 Detailed DRAINS model Peak of Peak Water Level for 100 year ARI - all storm durations

- Figure 6-2 Limited Model Peak of Peak Water Level for 100 year ARI - all storm durations

- Figure 6-3 RAFTS Model Peak of Peak Water Level for 100 year ARI - all storm durations

- Figure 6-4 Detailed DRAINS Model Peak of Peak Water Level for 100 year ARI - all storm durations

SINCLAIR KNIGHT MERZ

- Table 6-1: Comparison of Peak Flood Water Levels in Two Dimensional Modelling of Detailed DRAINS, Limited DRAINS and RAFTS models

Case	Difference between models	What the figure shows - blue / green areas	What the figure shows - red / yellow areas
Limited DRAINS Detailed DRAINS (Figure 5-4)	Both models include representations of the main stormwater drains of diameter 900 mm or greater, however the detailed model also includes smaller diameter pipes.	Areas are where the limited DRAINS model of the pipe network does not extend. This demonstrates the level of under prediction of peak flood depth in the limited model, solely because of it omitting smaller parts of the stormwater system. Typical values: limited DRAINS model underestimates by 5 to 25 cm Higher values: Some areas where limited DRAINS model under predicts by up to 50 cm	Areas where limited DRAINS peak flood levels exceed detailed DRAINS peak flood levels. These are due to water along the main overland flow path being concentrated by the limited DRAINS model. This demonstrates the difference between the models in the time taken for water to runoff along streets and into the overland sag. Typical values: Generally limited model over predicts by less than 5 cm Higher values: Small number of points where limited model over predicts by up to 50 cm
RAFTS - Detailed DRAINS (Figure 5-5)	Only the detailed DRAINS model represents the stormwater system. The RAFTS model consider surface runoff only.	Areas where the RAFTS model does not extend, but which are covered by the detailed DRAINS model. This is where the RAFTS model will under predict peak flood levels. Typical values: RAFTS model underestimates by 5 to 25 cm Higher values: Some areas where limited DRAINS model under predicts by up to 50 cm	Areas where peak flood levels in the RAFTS model exceed those in the detailed DRAINS model. This shows the impact neglecting the major pipe drainage network has on peak flood levels. As with the limited DRAINS model, the difference is partly due to the difference in the time taken for water to reach the sag. Typical values: Generally RAFTS over predicts by 5 to 10 cm along much of main overland flow path Higher values: Over predicts by 25 to 50 cm in some upper parts of the main overland flow path

Case	Difference between models	What the figure shows - blue I green areas
RAFTS - limited DRAINS (Figure 5-6)	Both models represent subcatchments at roughly the same scale (compared to the detailed DRAINS model, which has much finer and smaller subcatchments). The limited model includes stormwater drains of diameter 900 mm or greater, whereas all flood flow in the RAFTS model is conveyed overland.	Areas where peak flood levels in the limited DRAINS model exceed those in the RAFTS model. The few instances of this are due to the slightly more detailed representation of the overflows from the subcatchments in DRAINS. Typical values: Isolated points only Higher values: Isolated points only

What the figure shows - red / yellow areas

Areas where peak floods levels in the RAFTS model exceed those in the limited DRAINS model. This shows the difference between two models which represent subcatchments at the same level of detail, but one of which includes the major pipe drainage network.
Typical values: along the sides and at the top of the main overland path, RAFTS can over predict relative to the limited DRAINS model by 10 to 25 cm

Higher values: RAFTS exceeds limited DRAINS results by up to 50 cm in places near the top of the main overland flow path

- Figure 6-5 Limited DRAINS Model - Detailed DRAINS Model (Difference in Peak Water Level)

- Figure 6-6 RAFTS Model - Detailed DRAINS Model (Difference in Peak Water Level)

- Figure 6-7 RAFTS Model - Limited DRAINS Model (Difference in Peak Water Level)

SINCLAIR KNIGHT MERZ

- Figure 6-8 (Zoom View) Limited DRAINS Model - Detailed DRAINS Model (Difference in Peak Water Level)

SINCLAIR KNIGHT MERZ

The comparison of differences in Table 6-1 gives an indication of the level of precision of the Limited DRAINS and RAFTS modelling approaches. In this case, the error resulting from the less detailed models is typically of the order of 5 to 25 cm , although it can be up to 50 cm in some areas.

The less detailed models miss potential flooding away from the main drainage routes in the catchment, with the Detailed DRAINS model showing a significantly larger flood footprint. In some places, such as the blue areas on the lower right hand side of Figure 6-5, the Detailed DRAINS models has picked up substantial depths of flooding missed in the other models.

However, much of the additional flooding in the Detailed DRAINS model is around the fringes of the main overland flow paths, and is confined to the streetscape or local drainage lines between buildings. Modelling these fringe areas has benefits in terms of getting overland travel times in the catchment correct, however would probably only have minimal impact on setting floor levels for flood risk planning.

The Limited DRAINS and RAFTS models also over estimate the depth of flooding along the main overland flow routes, such as the orange and red areas on the lower left hand side of Figures 6-5 and 6-6. Much of this is simply due to the difference in the level of detail in the two dimensional model. By introducing flows onto the grid at a greater number of points and further up the catchment, the more detailed model is able to identify areas where floodwater will accumulate or encounter obstacles blocking flow paths. However, some difference is also due to the hydrological modelling in the Limited DRAINS and RAFTS software. RAFTS, and the hydrological part of DRAINS, rely on conceptual modelling of floodplain storage and overland flow travel times. These will almost always produce different results to a two dimensional hydraulic grid, which is able to take into account the actual geometric layout of the catchment and the surface friction characteristics of overland flow paths.

6.4 Draft Flood Risk Precinct Result Sensitivity

6.4.1 Risk Categories

To illustrate the sensitivity of flood planning outcomes to hydrological modelling, FCC Draft High and Medium Risk Categories were calculated for each of the three modelling approaches. FCC define the risk categories as:

- High Risk: The area of land below the 100 year ARI flood outline that is subject to high hydraulic hazard (for preparation of the interim flood risk precincts, this has been taken as the provisional 'High Hazard’ zone in Figure L2 of Appendix L in the NSW Floodplain Development Manual (2005))
- Medium Risk: Land below the 100 year ARI flood outline that is not in the High Risk Precinct
- Low Risk: All other land within the floodplain (i.e. within the extent of the PMF) but not identified within either the High Risk or Medium Risk Precincts

The high and medium risk categories are shown in Figures 6-9, 6-10 and 6-11 for the three hydrological modelling approaches. A more detailed view of an area of higher risk in the catchment is shown in Figures 6-12, 6-13 and 6-14.

6.4.2 Sensitivity Mapping

Figure 6-9 shows the hazard in the wider catchment for Detailed DRAINS model. The high risk areas are generally confined to the main overland flow route running from south west to north east. The Detailed DRAINS model shows no significant areas of high risk outside of this area.

Figures 6-10 and 6-11 for the Limited DRAINS and RAFTS models show very similar patterns for the flood risk. In particular, all of the major areas identified as high risk in the detailed model are also identified as high risk in the limited DRAINS and RAFTS models.

However the two less detailed models do show additional high risk areas which are not in the Detailed DRAINS model results. This is due to the coarser representation of catchments, and the location of the inflows from the Limited DRAINS and RAFTS model onto the TUFLOW grid. As there are fewer inflow boundaries into TUFLOW for these less detailed models, each boundary puts more flow onto the hydraulic model grid than the corresponding Detailed DRAINS model boundary does. This leads to artificial concentration of flows on the TUFLOW grid in the less detailed models, and produces isolated points where velocities, depths and risk are artificially high.

This is demonstrated in the detailed Figures 6-12, 6-13 and 6-14. In the Detailed DRAINS model (Figure 6-12), there is an area of high flood risk near the centre of the figure. This is reproduced in both Limited DRAINS (Figure 6-13) and RAFTS (Figure 6-14) models. However the RAFTS model also indicates high flood risk areas to the south west of this area. This is partly due to the location of the model boundaries at this point, artificially concentrating flow.

6.5 Verification of Results

Also shown in Figures 6-9 through to 6-14 are known overland flooding spots within the catchment. These provide a check on whether the different types of model are consistent with past flooding behaviour. Comparison of the trouble spots with the model results indicates:

- All three hydrological models picked most known trouble spots in the catchment.
- The Detailed DRAINS model picked up one spot in the south eastern corner of the catchment the other models did not pick up. Council's investigation database indicates that this location is within a shopping complex prone to localised flooding due to drainage blockages rather than overland flooding.
- Figure 6-9 Detailed DRAINS Model Risk Classification for 100 year ARI

SINCLAIR KNIGHT MERZ

- Figure 6-10 Limited DRAINS Model Risk Classification for 100 year ARI

SINCLAIR KNIGHT MERZ

- Figure 6-11 RAFTS Model Risk Classification for 100 year ARI

SINCLAIR KNIGHT MERZ

- Figure 6-12 (Zoom View) Detailed DRAINS Model Risk Classification for 100 year ARI

- Figure 6-13 (Zoom View) Limited DRAINS Model Risk Classification for 100 year ARI

SINCLAIR KNIGHT MERZ

- Figure 6-14 (Zoom View) RAFTS Model Risk Classification for 100 year ARI

SINCLAR KNIIGTT MERZ

6.6 Model Development Costs

The costs involved in developing each catchment / stormwater system model have been estimated for this report. This information allows a comparison of the effort involved in collecting data, estimating modelling parameters and developing models for each of the approaches.

Figure 6-15 shows estimates of the time required to develop each of the models in a study of this size. Time has been apportioned between the Detailed and Limited DRAINS model, according to the total number of pits and pipes that had to be captured for each type of model. Development of the RAFTS model required no ground survey, although it does rely on Airborne Laser Survey (ALS) and aerial photography being available in order to estimate model parameters. The additional time required to collect information for the Detailed DRAINS model is significant. In this study, programming and carrying out this work led to delays in initiating the hydrological modelling.

Figure 6-16 shows the labour cost estimated to be required in survey and in developing the models. A number of tasks were common to all three modelling approaches, and costs have been split according to the level of detail required for each model. Developing the Detailed DRAINS model is significantly more expensive and time consuming than developing either the Limited DRAINS or RAFTS model. The Detailed DRAINS model is approximately three to four times as expensive as the Limited DRAINS model, and approximately fourteen times as expensive as the RAFTS model.

- Figure 6-15: Labour time involved in Model Development for Hydrological / Stormwater Network Models

- Figure 6-16: Labour Cost of Model Development for Hydrological / Stormwater Network Models

SINCLAIR KNIGHT MERZ

6.7 Sensitivity of Hydrological Modelling - Conclusions

General conclusions from comparison of the different modelling approaches are:

- Detailed modelling of the catchment and stormwater system provides a significantly more precise picture of flooding in the flood fringe and streetscape
- Despite the difference in modelled flood extent this did not translate into significantly different assessments of flood risk between the three approaches, or indicate that significantly different flood planning controls would be adopted
- High flood risk areas located along the main overland flow paths were generally captured by all the models
- In some cases the simplified models overstated flood risk due to poorer modelling of flow travel times, and artificial concentration of floodwater at coarser inflow boundaries
- In this study Detailed DRAINS model development was estimated to be four to five times as expensive as Limited DRAINS model development, and approximately fourteen times as expensive as RAFTS model development
- In similar studies in the future, the additional flooding identified by the Detailed DRAINS model is unlikely to justify the additional data collection and model development costs
- While there are instances where the detailed model does identify significant flooding, such areas could be identified through local knowledge of particular flood prone areas, detailed catchment site inspections, or small extensions to initial modelling and mapping in sensitive areas
- Flood planning controls such as flood freeboard levels will address some of the uncertainty surrounding the location of the flood fringe in the simplified models.

6.8 Sensitivity of Hydrological Modelling - Recommendations

Based on the outcomes of this study it is recommended that:

- A Limited DRAINS type approach be favoured for overland flood studies by FCC in the future, as:
- It captures most significant 'trouble spots' within the catchment
- Significantly less data capture is involved than is required for a detailed model
- It represents a compromise between cost and level of detail
- Model extent can be adapted to include known historical 'trouble spots’ during project scoping
- The model can be extended in the future should this be required
- Ground truthing and reality testing against known Council information is key in defining model extent, reviewing model results, and identification of flood hazard.

7. Flood Mapping Results

7.1 Background

The Limited DRAINS hydrological model of the entire Canley Corridor area (including sections of sub-catchments 14 and 16) was used to provide draft flood mapping for overland flow and to prepare interim flood risk precinct outlines. This model was based on the Limited DRAINS model developed for the comparison of the three different modelling approaches.

This section of the report details how the flood outline mapping and the flood risk precinct mapping was prepared for the 100 year ARI and PMF events.

7.2 Flood Outline Mapping

Detailed flood depth mapping for the 100 year ARI flood is included in Appendix D. The mapping is based on the following approach:

- A Limited DRAINS model was used, with parameters and inputs as discussed in earlier sections of this report
- The combined Limited DRAINS and TUFLOW model was run for storm durations including 15 minutes, 30 minutes, 45 minutes, 60 minutes, 90 minutes and 2 hours
- The peak water level of each storm duration at each grid point in the TUFLOW model of the catchment was extracted, and used to form a 'peak of peaks' grid of flood depth
- The critical storm duration varies across the catchment area, however along the main flow path within the catchment it is generally between 1.5 and 2 hours
Results for the 5 and 20 year ARI events are also tabulated in Appendices B and C.

7.3 Peak Flows across Selected Roads

The peak flow crossing a number of the larger roads in the catchment is reported in Appendix C. The flow given is the total flow at the road crossing (not including pipe flows) at the peak of the 5 , 20, 100 year ARI and PMF events. This is reported for the storm duration giving the highest peak flow for the selected event.

7.4 The Impact of Fencing on Flood Outline Mapping

Results produced for this study have not included the effect of fences as potential barriers to overland flood flows. Accurate representation of fences would have required significant additional data collection, as well as making a number of assumptions in the flood modelling that could not be validated in the time available.

However, a sensitivity test on the 100 year storm was carried out to assess the potential impact of 'solid' fences in the upper catchment. The type of fences between properties in the upper catchment was assessed on-site, and is shown in Appendix F Figure F1. Lengths of continuous and solid (brick or "Colourbond") fencing were represented as solid boundaries in the model for the sensitivity test. It was assumed that these would retain water up to 1.0 metre depth, and then overflow freely. The modelled fence boundaries are shown in Figure F2.

The peak flood depth in the 100 year ARI event with the fence blockages included is shown in Figure F3 (this can be compared to the corresponding flood depth map in Appendix D for the nofence situation). The peak flood depth adjacent to the blockages is raised to the assumed overflow level of 1.0 metre at the fence boundary. In areas where most of the flow is conveyed across properties rather than along streets, the blockages significantly increase water levels in upstream properties. The increased depth due to the fences is therefore directly related to the assumed depth at which the fence overflows or fails.

Figure F4 shows the increase in the extent of the provisional high hazard area, as defined in the Floodplain Development Manual (NSW Government, 2005). As the fences increase flooding upstream, the area classified as high hazard according to the provisional Floodplain Development Manual also increases accordingly. This illustrates the potential additional risk solid fence obstructions may have within the floodplain.

7.5 Flood Risk Precinct Mapping Process

Flood risk precinct mapping has been prepared for the Canley Corridor catchment. This mapping is based on GIS analysis of the 100 year ARI and PMF peak depth and velocity grids, in accordance with the FCC DCP flood risk precinct categories described in Table 9-1. The resulting flood risk precinct maps are included in Appendix E. These maps are the refined versions of the interim flood risk precinct maps issued in the 2007 study report.

Table 9-1 FCC Flood Risk Precincts (Fairfield City Wide DCP, 2006)

Risk Precinct	Description
High	The area of land below the 100 year ARI flood outline that is subject to high hydraulic hazard (for preparation of the draft flood risk precincts, this has been taken as the provisional 'High Hazard' zone Figure L2 of Appendix L in the NSW Floodplain Development Manual (2005))
Medium	Land below the 100 year ARI flood outline that is not in the High Risk Flood Precinct LowAll other land within the floodplain (i.e. within the extent of the PMF) but not identified within either the High Risk or Medium Risk Precincts.

7.5.1 Interim Flood Risk Precinct Map Production

Council has set definitions for flood risk precinct mapping for mainstream flooding, based in part on the experience gained in preparing maps for the Prospect Creek and Cabramatta Creek mainstream flood studies. However, overland flooding is more complicated than mainstream flooding. Several factors (buildings, fences, roads, stormwater pits and pipes, debris blockages) can affect the way the flood behaves in an overland flowpath, as opposed to mainstream flooding where the floodplain normally follows the creek shape. This will ultimately also affect how the flood risk precincts will be defined for an overland floodplain.

To produce the interim flood risk precinct mapping in 2007, SKM and FCS followed established DCP mainstream flooding definitions. These definitions for flood risk precincts are detailed in Chapter 11 of the DCP. In producing the interim maps, a number of difficulties were found in applying the mainstream mapping methodologies overland flooding mapping. Evacuation difficulties, higher ground level "islands", and mapping localised, shallow depth flooding were not fully considered when these interim maps were produced. In January 2009 Council reviewed the interim precincts in order to address these specific mapping issues, which are detailed below.

7.5.2 Final Flood Risk Precinct Map Production

Specific refinements to the interim flood risk precinct maps were made as follows:

- Medium Risk Areas changed to Low or No Risk: ‘Islands’ of low risk surrounded by a medium risk precinct were originally mapped as continuous areas of medium risk. The maps were updated to show these 'islands' as low (or no) risk. Most of the properties affected by this change are located in the area between Canley Vale Road, Sackville Street and Railway Parade.
- Medium Risk Areas changed to High Risk: Areas of medium risk surrounded by high risk were originally left as medium risk. During the refinement process, evacuation difficulties in these areas were assessed resulting in some areas being changed to high risk. For instance, 66 properties on Freeman Avenue at the northern end of the catchment were reclassified as high risk.

Sackville Street and Railway Parade were also identified as being affected by high flood depths (greater than 1 metre depth) and high velocities (greater than $2 \mathrm{~m} / \mathrm{s}$) during the 100 year ARI event. Due to the potential of these roads being used as evacuation routes sections of these roads were reclassified as high risk.

- Removal of Nuisance or Local Flooding in Outer Fringes: Isolated areas of small depths away from the main flow paths may be contained within the street or reflect the assumptions made in setting up the flood model, and consequently including them in the mapping may not
be appropriate. A review was therefore undertaken to determine areas which could be considered "nuisance" or "localised" flooding caused by local drainage issues rather than actual overland flooding.
The Floodplain Development Manual (2005) defines local drainage problems as invariably involving "shallow depths (less than 0.3 m) with generally little danger to personal safety". It is likely that the FDM based the 300 mm flood depth cut-off on the Building Code of Australia (BCA) which, at the time of publication of the FDM, required that house slabs were to be built to a minimum 300 mm above ground level (although the BCA have recently revised the minimum slab height to 150 mm).
SKM, in consultation with Council, decided to adopt a more conservative depth of 150 mm to define shallow depths outside the main flowpaths for the following reasons:
- Council’'s kerb heights are generally 150 mm so any water flow below that depth would more than likely be contained on the street
- Building Code of Australia (BCA) now specifies slab heights for residential development at 150 mm
- The error in the Aerial Laser Survey (ALS) in which the Digital Terrain Model (DTM) for Canley Corridor is based on is between 100 and 200 mm
- Removing anything greater than 150 mm depth from the maps will produce disconnected pockets on the map and large areas of flooding not being shown
- Existing fencing on properties was not modelled (which would potentially increase flood depths and flood risk as discussed in Section 7.4) therefore a more conservative approach is required when looking at the extent of flooding.
- Mapping Building Polygon Outlines: As noted in Section 5.3.3, buildings were treated as solid objects in the floodplain and not subject to flooding. This means that the flood depth and velocity maps show building footprints as blank areas within the floodplain.
As Council provides the risk coding on the entire property and not just the building on it, the risk precinct maps required the appropriate risk to be shown across the entire property (as well as through the building footprint). In order to do this, two methods were used:
- A line was drawn connecting each end of the flood profile across the building for standard residential buildings
- For larger developments ground levels across the property were reviewed and compared to the flood level. Risk precincts/flood extents were extended across the building footprint where appropriate.

7.6 Mapping the Zone of Significant Flow

Flood depth and precinct mapping has highlighted some of the areas where it is important that overland flowpaths are kept clear. In these areas flowpath blockage can significantly increase upstream water levels and the level of risk to adjacent properties.

In addition to the flood risk precincts defined in the FCC DCP, this study defines a 'Zone of Significant Flow'. This identifies areas where measures may be necessary on properties to keep overland flow paths clear. Any measures applied in the Zone of Significant Flow would be in addition to those applied to flood risk precincts. The outline of the Zone of Significant Flow is shown in Appendix E.

The Zone of Significant Flow differs from the flood risk precincts as it defined by flood conveyance considerations rather than risk considerations. The outline was developed by comparing the relative importance of properties and roads as flowpaths. In the upper catchment most floodwater runs across properties rather than along roads. In these areas blockage of flowpaths within the properties can significantly increase water levels upstream and divert water onto other properties. In the lower catchment most floodwater runs along roads rather than across properties. Generally, in the lower floodplain blockage within the average property will have less effect on upstream water levels and the flood extent. However it is important to note that properties outside the Zone of Significant Flow can still experience inundation, and there may be unidentified properties where measures are necessary to ensure overland flowpaths remain unobstructed.

It is expected that options to ensure flowpaths are kept relatively free of obstructions will be discussed with the community during preparation of the Floodplain Risk Management Study and Plan as the next stage of the floodplain management process. One such management measure may be to open up the bottom section of fences in properties. Council has successfully implemented this in the past and assisted people with this management measure.

7.7 Summary of Mapping Outcomes

The flood depth and velocity mapping reveals the following:

- The higher depths and fastest flows are in the upper catchment.
- In the lower parts of the catchment, floodwaters spread out along the streets and depths are shallower.
- The majority of properties affected are residential, although a number of business properties, parks and recreational facilities are also affected
- All parcels zoned "business" within this floodplain will be affected by the 100 year flood event. These businesses are located along Canley Vale Road in Canley Vale between Sackville Street and Railway Parade.
- The calculated flood depths are less than 1 m in all properties. In fact, the majority of properties within the extents of flooding will be affected by less than 0.5 m depth of water, with the exception of some properties with depths up to 1 m in the upper end between Abercrombie Street and St Johns Road (in the "Zone of Significant Flow"), on McBurney Road between Gladstone Street and Hill Street and in Freeman Avenue.
- Flood depths on the roadway in Freeman Avenue and Railway Parade, just downstream of Bartley Street, exceed 1m.
- Flood velocities within properties are generally less than $0.5 \mathrm{~m} / \mathrm{s}$, though with isolated areas of between 0.5 and $1 \mathrm{~m} / \mathrm{s}$ across some properties in the upper catchment. The higher velocity flows (greater than $1 \mathrm{~m} / \mathrm{s}$) are mainly contained within the roads.
The final flood precinct mapping shows:
- An estimated 2,596 properties are flood prone up to the PMF flood event. This includes:
- 165 parcels in the High (or partially high) risk precinct
- 1627 parcels in the Medium (or partially medium) risk precinct
- 804 parcels in the Low (or partially low) risk precinct
- The Zone of Significant Flow encompasses approximately 242 properties. These are also located within either the high or medium risk precincts
- Areas of high risk include all properties along Freeman Avenue (due to evacuation difficulties and Orphan School Creek flooding), sections of Railway Parade and Sackville Street (two major roads which act as significant overland flow paths), and an isolated area between McBurney Road and Hughes Street along the main flow path within the upper part of the catchment.
- The medium risk precinct extends in a southwest to northeast direction from Cabramatta Road, across Cumberland Highway, covering much of the Canley Vale Road East and Sackville Street area. There is also a low point running southwards from the end of Sackville Street into McBurney Road which is medium risk.
- The low risk precinct follows the outline of the medium risk precinct closely, although it extends significantly beyond the Medium Risk Precinct between Canley Vale Road East, Gladstone Road and Sackville Street, and in localised areas on either side of Railway Parade.
The extent of the flood risk precincts reflects the topography of the catchment, with the precincts being narrow and confined in the steeper upper parts of the catchment to the south, and spreading out across the flatter lower parts of the catchment in the south. These features of the topography also explain the close similarity of the medium and low risk precincts in the upper catchment, and why the low risk precinct outline spreads comparatively further in the lower parts of the catchment.

8. Conclusions

8.1 Hydrologic Modelling Methodology

Comparison of the different hydrologic models indicates that while detailed modelling provides a more precise picture of flooding, this would not necessarily translate into a different assessment of flood risk, or in significantly different planning controls being applied. All three hydrologic modelling approaches (Detailed DRAINS, Limited DRAINS and RAFTS) resulted in similar high flood risk areas being identified along the main overland flow paths, and reproduced the known historical 'trouble spots’ within the catchment. However the simpler models tended to overestimate flood risk due to coarser representation of flow travel times and artificial concentration of flows at fewer inflow boundaries.

Production of a detailed DRAINS model including all pits and pipes in the catchment was estimated to be four to five times more expensive than production of a limited DRAINS model, and approximately 14 times more expensive than production of a RAFTS model. This reflects the different amount of survey data required and the complexity of the model construction.

The preferred approach identified by the study is a limited DRAINS model representing larger sized pipes in the stormwater network. This approach can be as acceptable in determining significant areas of risk as a detailed DRAINS model approach, if the extent of the modelling stormwater network reflects known trouble spots in the catchment, and represents the major elements of the trunk drainage system.

8.2 Canley Corridor Flood Behaviour and Risk

Peak flood depths on most properties are less than 0.5 metres, although there are some areas in the upper catchment where depths are between 0.5 and 1.0 metres. Similarly, flow velocities across most properties are generally below 0.5 metres per second, although higher velocities are seen in many streets and across some upper catchment properties.

A "Zone of Significant Flow" has also been identified where it is important that overland flowpaths are kept clear. It contains much of the 100 year ARI extent in the upper catchment, where flowpath blockage caused by fences, large buildings and debris can significantly increase water levels and divert water onto nearby properties.

These maps only represent flooding due to runoff from within the Canley Corridor catchment. Those parts of the Corridor along the banks of Orphan School Creek may also be at risk from mainstream flooding, generated in the upper Orphan School Creek catchment to the north and west of the Canley Corridor. Mainstream flood extents for Orphan School Creek are reported in the Flood Study for Orphan School Creek, Green Valley Creek and Clear Paddock Creek (Sinclair Knight Merz \& Fairfield Consulting Services, 2008).

The Canley Corridor Overland Flood Study has been successful in achieving its objectives which were to:

- test the sensitivity of overland flood modelling to different assumptions about the capacity of the stormwater drainage system
- define flood behaviour and identify the major overland flow paths within the Canley Corridor catchment, and
- identify properties at risk of local overland flooding and to prepare flood risk precinct maps.

The study has also:

- established methodologies for modelling and flood risk mapping for future overland flood studies for Fairfield LGA
- provided maps which are more meaningful to Council officers, development proponents and the community
- provided a good foundation from which to prepare the floodplain risk management study and plan, particularly with regards to flood emergency response, as the next step in the floodplain risk management process

9. Glossary

Term	Description
Annual Exceedance Probability (AEP)	Term used to describe the chance of a flood of a given or larger size occurring in any one year, expressed as a percentage. Eg. a 1% AEP flood means there is a 1% (ie. one-in-100) chance of a flood of that size or larger occurring in any one year (see ARI).
Australian Height Datum (AHD)	A common national plain of level corresponding approximately to mean sea level. All flood levels, floor levels and ground levels are normally provided in metres AHD (m AHD)
Average Recurrence Interval (ARI)	The long-term average number of years between the occurrence of a flood as big as, or larger than, the selected event. For example, floods with a discharge as great as, or greater than, the 20 year ARI flood event will occur on average once every 20 years. ARI is another way of expressing the likelihood of occurrence of a flood event.
catchment	A catchment is the area of land from which rainwater drains into a common point such as a reservoir, pond, lake, river or creek. In urban areas such as Fairfield, the majority of the rainwater is collected by gutters and pipes and then flows through stormwater drains into the stormwater system.
conveyance	A direct measure of the flow carrying capacity of a particular cross-section of a stream or stormwater channel. (For example, if the conveyance of a channel cross-section is reduced by half, then the flow carrying capacity of that channel cross-section will also be halved).
discharge	The rate of flow of water measured in terms of volume per unit time, eg. cubic metres per second $\left(\mathrm{m}^{3} / \mathrm{s}\right)$. Also known as flow. Discharge is different from the speed/velocity of flow which is a measure of how fast the water is moving.
extreme flood	An estimate of the probable maximum flood, which is the largest flood likely to ever occur.
flood	A relatively high stream flow which overtops the natural or artificial banks in any part of a stream, river, estuary, lake or dam, and/or local overland flooding associated with major drainage as defined by the FDM before entering a watercourse.
flood awareness	An appreciation of the likely effects of flooding and a knowledge of the relevant flood warning and evacuation procedures.
flood hazard	The potential for damage to property or harm to persons during a flood or a situation with a potential to cause loss. In relation to this plan, the hazard is flooding which has the potential to cause harm or loss to the community. Flood hazard is a key tool used to determine flood severity and is used for assessing the suitability of future types of land use.
flood level	The height of the flood described as either a depth of water above a particular location (eg. 1m above floor level) or as a depth of water related to a standard level such as Australian Height Datum (eg. flood level is 5m AHD).
flood liable/flood prone land	Land susceptible to flooding up to the PMF. The term flood liable or flood prone land covers the entire floodplain.

Term	Description
floodplain	The area of land that is subject to inundation by floods up to and including the PMF event.
Floodplain Development Manual (FDM)	Refers to the document dated April 2005, published by the New South Wales Government and entitled "Floodplain Development Manual: the management of flood liable land".
Floodplain Risk Management Plan (FRMP)	A plan prepared for one or more floodplains in accordance with the requirements of the FDM or its predecessors.
Floodplain Risk Management Study (FRMS)	A study prepared for one or more floodplains in accordance with the requirements of the FDM or its predecessors.
flood risk	The chance of something happening that will have an impact. It is measured in terms of consequences and probability (likelihood). In the context of this plan, it is the likelihood of consequences arising from the interaction of floods, communities and the environment.
flood risk precinct	An area of land with similar flood risks and where similar development controls may be applied by a Council to manage the flood risk. The flood risk is determined based on the existing development in the precinct or assuming the precinct is developed with normal residential uses. Usually the floodplain is categorised into three flood risk precincts 'low', 'medium' and 'high', although other classifications can sometimes be used. High Flood Risk: This has been defined as the area of land below the 100-year flood event that is either subject to a high hydraulic hazard or where there are significant evacuation difficulties. Medium Flood Risk: This has been defined as land below the 100-year flood level that is not within a High Flood Risk Precinct. This is land that is not subject to a high hydraulic hazard or where there are no significant evacuation difficulties. Low Flood Risk: This has been defined as all land within the floodplain (i.e. within the extent of the probable maximum flood) but not identified within either a High Flood Risk or a Medium Flood Risk Precinct. The Low Flood Risk Precinct is that area above the 100-year flood event.
flood study	A study that investigates flood behaviour, including identification of flood extents, flood levels and flood velocities for a range of flood events.
hydraulics	The study of water flow in waterways; in particular, the evaluation of flow parameters such as water level and velocity.
hydraulic hazard	The hazard as determined by the provisional criteria outlined in the FDM in a 100 year flood event.
hydrology	The study of rainfall and runoff process; in particular, the evaluation of peak discharges, flow volumes and the derivation of hydrographs (graphs that show how the discharge or stage/flood level at any particular location varies with time during a flood).

Term	Description
local drainage	Term given to small scale inundation in urban areas outside the definition of major drainage as defined in the FDM. Local drainage problem invariably involve shallow depths (less than 0.3 m) with generally little danger to personal safety.
local overland flooding	The inundation by local runoff rather than overbank discharge from a stream, river, estuary, lake or dam.
mainstream flooding	The inundation of normally dry land by local runoff rather than overbank discharge from a stream, river, estuary, lake or dam.
overland flow path	The path that floodwaters can follow if they leave the confines of the main flow channel or pipe system. Overland flow paths can occur through private properties or along roads.
peak discharge	The maximum discharge or flow during a flood measured in cubic metres per second ($\mathrm{m}^{3} / \mathrm{s}$).
probable maximum flood (PMF)	The largest flood that could conceivably occur at a particular location, usually estimated from probable maximum precipitation.
probable maximum precipitation (PMP)	The greatest depth of precipitation for a given duration meteorologically possible over a given size storm area at a particular location at a particular time of the year, with no allowance made for long-term climatic trends (World Meteorological Organisation, 1986). It is the primary input to the estimation of the probable maximum flood.
probability	A statistical measure of the expected chance of flooding (see ARI).
risk	See flood risk.
runoff	The amount of rainfall that ends up as flow in a stream. Also known as rainfall excess.
velocity	The term used to describe the speed of floodwaters, usually in metres per second (m / s).
water level	See flood level.
water surface profile	A graph showing the height of the flood (ie. water level or flood level) at any given location along a watercourse at a particular time.
zone of significant flow	That area of the floodplain where a significant discharge of water occurs during floods. Should the area within this boundary be fully or partially blocked, a significant distribution of flood flows or increase in flood levels would occur.

10. References

- Bewsher Consulting (2006) Prospect Creek Floodplain Management Plan, Flood Study Review
- Bureau of Meteorology (1987) Rainfall Intensity for Various Durations and Return Periods for Fairfield City Council
- Bureau of Meteorology (2003) The Estimation of Probable Maximum Precipitation in Australia: Generalised Short-Duration Method
- Dalland \& Lucas Pty Ltd (1990) Canley Vale-Cabramatta Drainage Investigation
- Department of Natural Resources, NSW Government (2005) Floodplain Development Manual - the management of flood liable land
- Fairfield City Council (2002) Stormwater Drainage Policy
- Fairfield City Council (2006) Fairfield City Wide Development Control Plan Chapter 11 Flood Risk Management
- Institution of Engineers, Australia (1999) Australian Rainfall and Runoff Book 2
- NSW Government (2005) Floodplain Development Manual
- Sinclair Knight Merz \& Fairfield Consulting Services (2008) Flood Study for Orphan School Creek, Green Valley Creek and Clear Paddock Creek
- Watercom (2004) DRAINS User Manual
- Willings and Partners (1990) Lower Prospect Creek Floodplain Management Study, Volume 1 Report
- XP Software (2002) XP-RAFTS User Manual

Appendix A Hydrological / Stormwater Model Data

Table A1: Detailed DRAINS model Stormwater Pit Data

Pit Name	Pit Type	Pit Size	Surface Elevation	Ku	$\begin{gathered} \text { Ponding } \\ \text { Vol } \end{gathered}$		Blocking Factor	Bolt down lid
Q271050	OnGrade	RM. 7 Grated Pit	19.32	4.8	-	-	0.5	No
Q271040	OnGrade	1.8 m lintel	19.06	1.5	-	-	0.5	No
Q271030	OnGrade	1.8 m lintel	17.64	1.5	-	-	0.5	No
Q271020	OnGrade	1.8 m lintel	16.1	1.5	-	-	0.5	No
Qln2	Node	-	15.8	-	-	-	-	-
Q273010	OnGrade	RM. 7 Grated Pit	16.14	4.8	-	-	0.5	No
Q274010	OnGrade	0.9 m lintel	17.76	4.8	-	-	0.5	No
Q23005	OnGrade	0.9 m lintel	30.65	4.8	-	-	0.5	No
Q23015J	OnGrade	RM. 7 Grated Pit	30.35	1.5	-	-	0.5	Yes
Q46005J	OnGrade	RM. 7 Grated Pit	30.2	1.5	-	-	0.5	Yes
Q46001	OnGrade	1.8 m lintel	30	1.5	-	-	0.5	No
Qin1	Node	-	28.5	-	-	-	-	-
Q117030	OnGrade	1.8 m lintel	32.5	4.8	-	-	0.5	No
Q117010	Sag	3.0 m lintel	32.69	1.5	5	0.5	0.5	No
Q117020	OnGrade	RM. 7 Grated Pit	32.7	1.5	-	-	0.5	No
Q1100140	OnGrade	RM. 7 Grated Pit	32.26	1.5	-	-	0.5	No
Q1100130	OnGrade	RM. 7 Grated Pit	31.88	1.5	-	-	0.5	No
Q1100120	OnGrade	RM. 7 Grated Pit	31.55	1.5	-	-	0.5	No
Q1100110	OnGrade	RM. 7 Grated Pit	31.25	1.5	-	-	0.5	No
Q1100100	OnGrade	RM. 7 Grated Pit	30.98	1.5	-	-	0.5	No
Q110090	OnGrade	RM. 7 Grated Pit	30.86	1.5	-	-	0.5	No
Q110080	OnGrade	1.8 m lintel	30.42	1.5	-	-	0.5	No
Q110070	OnGrade	1.8 m lintel	29.46	1.5	-	-	0.5	No
Q110060	OnGrade	1.8 m lintel	28.73	1.5	-	-	0.5	No
Q110050	OnGrade	1.8 m lintel	27.82	1.5	-	-	0.5	No
Q110040	OnGrade	RM. 7 Grated Pit	26.4	1.5	-	-	0.5	No
Q110030	OnGrade	RM. 7 Grated Pit	25.33	1.5	-	-	0.5	No
Q110020	OnGrade	RM. 7 Grated Pit	24.13	1.5	-	-	0.5	No
Q110010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	23.75	1.5	5	0.5	0.5	No
Q10450J	OnGrade	RM. 7 Grated Pit	23.85	1.5	-	-	0.5	Yes
Q10440J	OnGrade	RM. 7 Grated Pit	23.25	1.5	-	-	0.5	Yes
Q101010	Sag	4.2 m lintel	22.65	1.5	5	0.5	0.5	No
Q10420	Sag	1.2 m lintel	22.76	1.5	5	0.5	0.5	No
Q10410J	OnGrade	RM. 7 Grated Pit	21.57	1.5	-	-	0.5	Yes
Q10400J	OnGrade	RM. 7 Grated Pit	21.47	1.5	-	-	0.5	Yes
Q10390J	OnGrade	RM. 7 Grated Pit	21.1	1.5	-	-	0.5	Yes
Q95010	Sag	1.8 m lintel	20.74	1.5	5	0.5	0.5	No
Q10380J	OnGrade	RM. 7 Grated Pit	20.85	1.5	-	-	0.5	Yes
Q10370	OnGrade	RM. 7 Grated Pit	20.6	1.5	-	-	0.5	Yes
Q10360J	OnGrade	RM. 7 Grated Pit	20.3	1.5	-	-	0.5	Yes
Q10350J	OnGrade	RM. 7 Grated Pit	20	1.5	-	-	0.5	Yes
Q10340	OnGrade	1.8 m lintel	19.2	1.5	-	-	0.5	No
Q10330	OnGrade	1.8 m lintel	19.26	1.5	-	-	0.5	No
Q10320	OnGrade	RM. 7 Grated Pit	19.3	1.5	-	-	0.5	Yes
Q10310	OnGrade	RM. 7 Grated Pit	19.2	1.5	-	-	0.5	Yes
Q10300	OnGrade	RM. 7 Grated Pit	18.55	1.5	-	-	0.5	Yes
Q10290	OnGrade	RM. 7 Grated Pit	18.08	1.5	-	-	0.5	Yes
Q10280	OnGrade	RM. 7 Grated Pit	18.2	1.5	-	-	0.5	Yes
Q10270J	OnGrade	RM. 7 Grated Pit	17.25	1.5	-	-	0.5	Yes
Q10260J	OnGrade	RM. 7 Grated Pit	17.2	1.5	-	-	0.5	Yes
Q10250	OnGrade	0.9 m lintel	17.03	1.5	-	-	0.5	No
Q10240J	OnGrade	RM. 7 Grated Pit	17.5	1.5	-	-	0.5	Yes
Q10235J	OnGrade	RM. 7 Grated Pit	17.5	1.5	-	-	0.5	Yes
Q10230J	OnGrade	RM. 7 Grated Pit	17.2	1.5	-	-	0.5	Yes
Q10220J	OnGrade	RM. 7 Grated Pit	16.31	1.5	-	-	0.5	Yes
Q10210J	OnGrade	RM. 7 Grated Pit	16.1	1.5	-	-	0.5	Yes
Q10200J	OnGrade	RM. 7 Grated Pit	16	1.5	-	-	0.5	Yes
Q10190	OnGrade	1.8 m lintel	15.59	1.5	-	-	0.5	No
Q10180	OnGrade	1.8 m lintel	15.55	1.5	-	-	0.5	No
Q10170	OnGrade	1.8 m lintel	15.06	1.5	-	-	0.5	No
Q10165J	OnGrade	RM. 7 Grated Pit	15	1.5	-	-	0.5	Yes
Q10161	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \end{aligned}$	14.54	1.5	5	0.5	0.5	No
Q10160J	OnGrade	RM. 7 Grated Pit	14.9	1.5	-	-	0.5	Yes
Q10150J	OnGrade	RM. 7 Grated Pit	14.85	1.5	-	-	0.5	Yes
Q10140	Sag	$0.9 \mathrm{~m} \times 0.45 \mathrm{~m}$ Grated pit	14.44	1.5	5	0.5	0.5	No
Q10120J	OnGrade	RM. 7 Grated Pit	14.23	1.5	-	-	0.5	Yes
Q10110J	OnGrade	RM. 7 Grated Pit	13.82	1.5	-	-	0.5	Yes
Q10100J	OnGrade	RM. 7 Grated Pit	13.55	1.5	-	-	0.5	Yes
Q1090	OnGrade	1.8 m lintel	13	1.5	-	-	0.5	No
Q1080	OnGrade	RM. 7 Grated Pit	13	1.5	-	-	0.5	No
Q1075	OnGrade	RM. 7 Grated Pit	12.65	1.5	-	-	0.5	No

Pit Name	Pit Type	Pit Size	Surface Elevation	Ku	Ponding Vol	Max Ponding Depth	Blocking Factor	Bolt down lid
Q1070	OnGrade	1.2 m lintel	12.65	1.5	-	-	0.5	No
Q1050J	OnGrade	RM. 7 Grated Pit	12.35	1.5	-	-	0.5	Yes
Q2410110	Sag	1.2 m lintel	11.91	1.5	5	0.5	0.5	No
Q1040	OnGrade	1.2 m lintel	12.64	1.5	-	-	0.5	No
Q1030	OnGrade	RM. 7 Grated Pit	11.99	1.5	-	-	0.5	No
Q1020J	OnGrade	RM. 7 Grated Pit	11.2	1.5	-		0.5	Yes
Q1010	OnGrade	1.2 m lintel	11.4	1.5	-	-	0.5	No
Q1000	Node	-	9.07		-	-	-	
Q116010	OnGrade	1.8 m lintel	31.72	4.8	-		0.5	No
Q115040	Sag	3.6 m lintel	33.95	4.8	5	0.5	0.5	No
Q115030J	OnGrade	RM. 7 Grated Pit	34.2	1.5	-	-	0.5	Yes
Q115020J	OnGrade	RM. 7 Grated Pit	33.18	1.5	-	-	0.5	Yes
Q118010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	32.22	4.8	5	0.5	0.5	No
Q1100150	OnGrade	RM. 7 Grated Pit	32.83	1.5	-	-	0.5	No
Q119010	OnGrade	3.0 m lintel	33.4	4.8	-	-	0.5	No
Q1100170	OnGrade	0.9 m lintel	33.83	1.5	-	-	0.5	No
Q1100160	OnGrade	RM. 7 Grated Pit	33.19	1.5	-	-	0.5	No
Q1100180	OnGrade	RM. 7 Grated Pit	34.44	4.8	-	-	0.5	Yes
Q155020	OnGrade	0.9 m lintel	34.8	1.5	-	-	0.5	No
Q155010	Sag	0.9 m lintel	34.39	1.5	5	0.5	0.5	No
Q150070	OnGrade	RM. 7 Grated Pit	35.28	1.5	-	-	0.5	Yes
Q150060	OnGrade	RM. 7 Grated Pit	32.21	1.5	-	-	0	Yes
Q150050	OnGrade	2.4 m lintel	31.8	1.5	-	-	0.5	No
Q150040	OnGrade	1.8 m lintel	30.75	1.5	-	-	0.5	No
Q150030	OnGrade	1.8 m lintel	29.37	1.5	-	-	0.5	No
Q150020	OnGrade	SA1 (Type 2)	29.2	1.5	-	-	0	No
Q150015	OnGrade	1.8 m lintel	29.85	1.5	-	-	0.5	No
Q150010	OnGrade	1.8 m lintel	28.5	1.5	-	-	0	Yes
Q10610J	OnGrade	RM. 7 Grated Pit	28.15	1.5	-	-	0.5	Yes
Q10600J	OnGrade	RM. 7 Grated Pit	27.45	1.5	-	-	0.5	Yes
Q10580	Sag	3.6 m lintel	27.07	1.5	5	0.5	0.5	No
Q10570J	OnGrade	RM. 7 Grated Pit	26.81	1.5	-	-	0.5	Yes
Q10560J	OnGrade	RM. 7 Grated Pit	26.58	1.5	-	-	0.5	Yes
Q10550J	OnGrade	RM. 7 Grated Pit	26.4	1.5	-	-	0.5	Yes
Q10540J	OnGrade	1.8 m lintel	26.46	1.5	-	-	0.5	Yes
Q10530	OnGrade	RM. 7 Grated Pit	25.3	1.5	-	-	0.5	Yes
Q10520	OnGrade	RM. 7 Grated Pit	24.87	1.5	-	-	0.5	Yes
Q10510J	OnGrade	RM. 7 Grated Pit	24.1	1.5	-	-	0.5	Yes
Q10500J	OnGrade	RM. 7 Grated Pit	23.7	1.5	-	-	0.5	Yes
Q10490J	OnGrade	RM. 7 Grated Pit	23.35	1.5	-	-	0.5	Yes
Q10480J	OnGrade	RM. 7 Grated Pit	23.7	1.5	-	-	0.5	Yes
Q10470J	OnGrade	RM. 7 Grated Pit	23.7	1.5	-	-	0.5	Yes
Q10460J	OnGrade	RM. 7 Grated Pit	23.4	1.5	-	-	0.5	Yes
Q156010	Sag	0.9 m lintel	34.54	1.5	5	0.5	0.5	No
Q157010	Sag	0.9 m lintel	34.65	4.8	5	0.5	0.5	No
Q120010	Sag	3.0 m lintel	23.22	4.8	5	0.5	0.5	No
Q112010	OnGrade	3.0 m lintel	26.55	4.8	-	-	0.5	No
Q107020	Sag	1.8 m lintel	25.42	4.8	5	0.5	0.5	No
Q107010	OnGrade	1.8 m lintel	25.52	1.5	-	-	0.5	No
Q106030	OnGrade	RM. 7 Grated Pit	24.8	1.5	-	-	0.5	No
Q106020	OnGrade	1.8 m lintel	23.69	1.5	-	-	0.5	No
Q106010	Sag	1.8 m lintel	23.05	1.5	5	0.5	0.5	No
Q111010	OnGrade	3.0 m lintel	24.17	4.8	-	-	0.5	No
Q102010	OnGrade	0.9 m lintel	22.61	1.5	-	-	0.5	No
Q101020	OnGrade	0.9 m lintel	22.7	1.5	-	-	0.5	No
Q109010	OnGrade	RM. 7 Grated Pit	30.44	1.5	-	-	0.5	Yes
Q1060100	OnGrade	0.9 m lintel	30	1.5	-	-	0.5	No
Q106090	Sag	1.8 m lintel	29.87	1.5	5	0.5	0.5	No
Q106080	OnGrade	RM. 7 Grated Pit	29.87	1.5	-	-	0.5	Yes
Q106070	OnGrade	0.9 m lintel	29.71	1.5	-	-	0.5	No
Q106060	OnGrade	1.8 m lintel	29.12	1.5	-	-	0.5	No
Q106050	OnGrade	1.8 m lintel	26.89	1.5	-	-	0.5	No
Q106040	OnGrade	1.8 m lintel	25.38	1.5	-	-	0.5	No
Q108010	OnGrade	1.8 m lintel	29.59	4.8	-	-	0.5	No
Q113010	OnGrade	3.0 m lintel	30.49	4.8	-	-	0.5	No
Q114010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	31.11	4.8	5	0.5	0.5	No
Q98030	OnGrade	1.8 m lintel	21.86	4.8	-	-	0.5	No
Q98020	OnGrade	RM. 7 Grated Pit	21.58	1.5	-	-	0.5	No
Q96030J	OnGrade	RM. 7 Grated Pit	22.1	1.5	-	-	0.5	Yes
Q96020	OnGrade	1.8 m lintel	21.69	1.5	-	-	0.5	No
Q96010	OnGrade	1.8 m lintel	20.87	1.5	-	-	0.5	No
Q99020	OnGrade	1.8 m lintel	21.87	4.8	-	-	0.5	No
Q99010	OnGrade	1.8 m lintel	21.86	1.5	-	-	0.5	No
Q99070	OnGrade	1.8 m lintel	21.96	4.8	-	-	0.5	No
Q99060	Sag	1.8 m lintel	22.06	1.5	5	0.5	0.5	No
Q99050	OnGrade	1.8 m lintel	21.99	1.5	-	-	0.5	No
Q99040	OnGrade	1.8 m lintel	21.87	1.5	-	-	0.5	No
Q83070	OnGrade	0.9 m lintel	25.75	1.5	-	-	0.5	No
Q83060	OnGrade	0.9 m lintel	25.5	1.5	-	-	0.5	No
Q83050	OnGrade	0.9 m lintel	25.31	1.5	-	-	0.5	No
Q83040	OnGrade	0.9 m lintel	25.15	1.5	-	-	0.5	No

Pit Name	Pit Type	Pit Size	Surface Elevation	Ku	Ponding Vol		Blocking Factor	Bolt down lid
Q83030	OnGrade	0.9 m lintel	25.05	1.5	-	-	0.5	No
Q83020J	OnGrade	0.9 m lintel	24.85	1.5	-	-	0.5	Yes
Q83010	OnGrade	1.8 m lintel	24.4	1.5	-	-	0.5	No
Q82030	OnGrade	1.8 m lintel	24.14	1.5	-		0.5	No
Q82020	OnGrade	1.8 m lintel	22.62	1.5	-	-	0.5	No
Q82010	OnGrade	1.8 m lintel	20.99	1.5	-	-	0.5	No
Q84010	OnGrade	1.8 m lintel	25.01	4.8	-	-	0.5	No
Q96090	OnGrade	1.8 m lintel	23.04	4.8	-	-	0.5	No
Q96080	Sag	1.8 m lintel	23.26	1.5	5	0.5	0.5	No
Q96070	Sag	1.8 m lintel	22.99	1.5	5	0.5	0.5	No
Q96060	OnGrade	1.8 m lintel	23.04	1.5	-	-	0.5	No
Q96050	OnGrade	1.8 m lintel	22.54	1.5	-	-	0.5	No
Q96040	OnGrade	1.8 m lintel	21.96	1.5	-		0.5	No
Q97030	OnGrade	RM. 7 Grated Pit	23.1	4.8	-	-	0.5	No
Q97020	OnGrade	1.8 m lintel	23.56	1.5	-	-	0.5	No
Q97010	OnGrade	1.8 m lintel	22.07	1.5	-		0.5	No
Q71020	OnGrade	1.8 m lintel	26.82	4.8	-	-	0.5	No
Q71010	Sag	1.8 m lintel	26.93	1.5	5	0.5	0.5	No
Q640105J	OnGrade	RM. 7 Grated Pit	26.7	1.5	-	-	0.5	Yes
Q640100	OnGrade	1.8 m lintel	26.07	1.5	-	-	0.5	No
Q64090J	OnGrade	RM. 7 Grated Pit	25.5	1.5	-	-	0.5	Yes
Q64080	OnGrade	1.8 m lintel	22.62	1.5	-	-	0.5	No
Q64070J	OnGrade	RM. 7 Grated Pit	22.6	1.5	-	-	0.5	Yes
Q64060J	OnGrade	RM. 7 Grated Pit	22.4	1.5	-	-	0.5	Yes
Q64050	OnGrade	1.8 m lintel	20.24	1.5	-	-	0.5	No
Q64044J	OnGrade	RM. 7 Grated Pit	19.95	1.5	-	-	0.5	Yes
Q64042J	OnGrade	RM. 7 Grated Pit	19.64	1.5	-	-	0.5	Yes
Q64040	OnGrade	1.8 m lintel	17.88	1.5	-	-	0.5	No
Q64030J	OnGrade	RM. 7 Grated Pit	17.95	1.5	-	-	0.5	Yes
Q64020J	OnGrade	RM. 7 Grated Pit	17.8	1.5	-	-	0.5	Yes
Q64010	OnGrade	1.8 m lintel	17.24	1.5	-	-	0.5	No
Q74010	OnGrade	1.8 m lintel	27.21	4.8	-	-	0.5	No
Q72050	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	26.7	1.5	5	0.5	0.5	No
Q72040	OnGrade	RM. 7 Grated Pit	27.11	1.5	-	-	0.5	No
Q72030	OnGrade	0.9 m lintel	26.95	1.5	-	-	0.5	No
Q72020	OnGrade	0.9 m lintel	26.86	1.5	-	-	0.5	No
Q72010	OnGrade	0.9 m lintel	26.73	1.5	-	-	0.5	No
Q640110	OnGrade	0.9 m lintel	26.64	1.5	-	-	0.5	No
Q73010	OnGrade	0.9 m lintel	27.02	4.8	-	-	0.5	No
Q75010	OnGrade	1.8 m lintel	27.14	4.8	-	-	0.5	No
Q72060	OnGrade	RM. 7 Grated Pit	27.14	1.5	-	-	0.5	No
Q240140	OnGrade	1.8 m lintel	30.6	4.8	-	-	0.5	No
Q46010	OnGrade	3.0 m lintel	30.9	1.5	-	-	0.5	No
Q240170	OnGrade	1.8 m lintel	32.3	4.8	-	-	0.5	No
Q240160	OnGrade	1.8 m lintel	31.4	1.5	-	-	0.5	No
Q240150	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	30.65	1.5	5	0.5	0.5	No
Q22005	OnGrade	1.8 m lintel	30.5	4.8	-	-	0.5	No
Q47010	OnGrade	1.8 m lintel	32.1	4.8	-	-	0.5	No
Q46020	OnGrade	1.8 m lintel	32.15	1.5	-	-	0.5	No
Q46040	OnGrade	1.8 m lintel	33.3	4.8	-	-	0.5	No
Q46030	OnGrade	1.8 m lintel	33.2	1.5	-	-	0.5	No
Q76010	OnGrade	1.8 m lintel	30.95	4.8	-	-	0.5	No
Q720100	OnGrade	RM. 7 Grated Pit	29.87	1.5	-	-	0.5	No
Q72090	OnGrade	RM. 7 Grated Pit	28.57	1.5	-	-	0.5	No
Q72080	OnGrade	RM. 7 Grated Pit	27.51	1.5	-	-	0.5	No
Q720110	OnGrade	1.8 m lintel	30.72	4.8	-	-	0.5	No
Q180510	Sag	1.8 m lintel	11.63	4.8	5	0.5	0.5	No
Q1800110J	OnGrade	RM. 7 Grated Pit	11.63	1.5	-	-	0.5	Yes
Q1800100	Sag	1.8 m lintel	10.47	1.5	5	0.5	0.5	No
Q180090J	OnGrade	RM. 7 Grated Pit	10.67	1.5	-	-	0.5	Yes
Q180080J	OnGrade	RM. 7 Grated Pit	10.53	1.5	-	-	0.5	Yes
Q180060J	OnGrade	RM. 7 Grated Pit	10.1	1.5	-	-	0.5	Yes
Q180050J	OnGrade	RM. 7 Grated Pit	10.28	1.5	-	-	0.5	Yes
Q180040J	OnGrade	RM. 7 Grated Pit	10.5	1.5	-	-	0.5	Yes
Q180030J	OnGrade	RM. 7 Grated Pit	10.4	1.5	-	-	0.5	Yes
Q180020J	OnGrade	RM. 7 Grated Pit	10.22	1.5	-	-	0.5	Yes
Q180010J	OnGrade	RM. 7 Grated Pit	10.25	1.5	-	-	0.5	Yes
Q180000	Node	-	9.9		-	-	-	
Q0510	Sag	0.9 m lintel	12.82	4.8	5	0.5	0.5	No
T3570150	OnGrade	1.8 m lintel	35.33	4.8	-	-	0.5	No
T3570140	OnGrade	RM. 7 Grated Pit	34.85	1.5	-	-	0.5	No
T3570130	OnGrade	1.8 m lintel	34	1.5	-	-	0.5	No
T3570120	Node	-	34.05	-	-	-	-	-
Q79110	OnGrade	1.8 m lintel	32.58	4.8	-	-	0.5	No
Q79010	OnGrade	1.8 m lintel	31.78	1.5	-	-	0.5	No
Q640160	Sag	1.8 m lintel	29.16	1.5	5	0.5	0.5	No
Q640150	Sag	1.8 m lintel	29.14	1.5	5	0.5	0.5	No
Q640140J	OnGrade	RM. 7 Grated Pit	27.5	1.5	-	-	0.5	Yes
Q640130	OnGrade	1.8 m lintel	27.06	1.5	-	-	0.5	No
Q640120	OnGrade	1.8 m lintel	26.91	1.5	-	-	0.5	No
Q77010	Sag	1.8 m lintel	26.83	1.5	5	0.5	0.5	No

Pit Name	Pit Type	Pit Size	Surface Elevation	Ku	Ponding Vol		Blocking Factor	Bolt down lid
H14010	Sag	2.4 m lintel	48	4.8	5	0.5	0.5	No
H11030J	OnGrade	RM. 7 Grated Pit	47.92	1.5	-	-	0.5	Yes
H11020	OnGrade	1.8 m lintel	46.05	1.5	-	-	0.5	No
H11010	OnGrade	2.4 m lintel	41.8	1.5	-		0.5	No
Q1500140	OnGrade	1.8 m lintel	38.7	1.5	-	-	0.5	No
Q1500130	OnGrade	1.8 m lintel	37.1	1.5	-	-	0.5	No
Q1500120	OnGrade	3.0 m lintel	36.05	1.5	-		0.5	No
Q1500115	OnGrade	1.8 m lintel	35.5	1.5	-	-	0.5	No
Q1500110	OnGrade	1.8 m lintel	35.45	1.5	-	-	0.5	No
Q1500100	OnGrade	1.8 m lintel	35.25	1.5	-		0.5	No
Q150090	Sag	3.0 m lintel	34.8	1.5	5	0.5	0.5	No
Q150080	OnGrade	RM. 7 Grated Pit	35.15	1.5	-	-	0.5	Yes
Q68110	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	19.74	4.8	5	0.5	0.5	No
Q68210	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	19.98	4.8	5	0.5	0.5	No
H11040	OnGrade	1.8 m lintel	47.95	4.8	-	-	0.5	No
Q85070	Sag	1.8 m lintel	39.7	4.8	5	0.5	0.5	No
Q85066J	OnGrade	RM. 7 Grated Pit	39.15	1.5	-	-	0.5	Yes
Q85063J	OnGrade	3.6 m lintel	38.6	1.5	-	-	0.5	Yes
Q85060	Sag	1.8 m lintel	35.5	1.5	5	0.5	0.5	No
Q85050	Sag	1.8 m lintel	35.4	1.5	5	0.5	0.5	No
Q85040J	OnGrade	RM. 7 Grated Pit	35.54	1.5	-	-	0.5	Yes
Q85036J	OnGrade	RM. 7 Grated Pit	29.6	1.5	-	-	0.5	Yes
Q85034J	OnGrade	RM. 7 Grated Pit	28.7	1.5	-		0.5	Yes
Q85032J	OnGrade	RM. 7 Grated Pit	28.7	1.5	-	-	0.5	Yes
Q85030	OnGrade	1.8 m lintel	27.7	1.5	-	-	0.5	No
Q85020	Sag	1.8 m lintel	27.6	1.5	5	0.5	0.5	No
Q85010	OnGrade	RM. 7 Grated Pit	27.7	1.5	-	-	0.5	Yes
Q82050	OnGrade	RM. 7 Grated Pit	25.98	1.5	-	-	0.5	Yes
Q82040	OnGrade	RM. 7 Grated Pit	25.26	1.5	-	-	0.5	Yes
Q210520	OnGrade	1.8 m lintel	16.45	4.8	-	-	0.5	No
Q210510J	OnGrade	RM. 7 Grated Pit	16.7	1.5	-	-	0.5	Yes
Q207060	OnGrade	1.2 m lintel	15.6	1.5	-	-	0.5	No
Q207050	OnGrade	1.2 m lintel	14.22	1.5	-	-	0.5	No
Q207040J	OnGrade	RM. 7 Grated Pit	14.27	1.5	-	-	0.5	Yes
Q207030	OnGrade	1.2 m lintel	13.06	1.5	-	-	0.5	No
Q207020J	OnGrade	RM. 7 Grated Pit	13.05	1.5	-	-	0.5	Yes
Q207010	OnGrade	1.2 m lintel	12.65	1.5	-	-	0.5	No
Q1800150	OnGrade	RM. 7 Grated Pit	12.8	1.5	-	-	0.5	Yes
Q1800140J	OnGrade	RM. 7 Grated Pit	12.25	1.5	-	-	0.5	Yes
Q1800130J	OnGrade	RM. 7 Grated Pit	12.38	1.5	-	-	0.5	Yes
Q1800120	Sag	1.8 m lintel	11.61	1.5	5	0.5	0.5	No
Q230520	OnGrade	RM. 7 Grated Pit	18.25	4.8	-	-	0.5	No
Q230510	OnGrade	RM. 7 Grated Pit	18.29	1.5	-	-	0.5	No
Q230010	OnGrade	1.8 m lintel	16.8	1.5	-	-	0.5	No
Q1800360	Sag	3.0 m lintel	15.91	1.5	5	0.5	0.5	No
Q1800340J	OnGrade	RM. 7 Grated Pit	16.47	1.5	-	-	0.5	Yes
Q1800330J	OnGrade	RM. 7 Grated Pit	15.97	1.5	-	-	0.5	Yes
Q1800320	Sag	1.8 m lintel	14.96	1.5	5	0.5	0.5	No
Q1800310J	OnGrade	RM. 7 Grated Pit	15.2	1.5	-	-	0.5	Yes
Q1800300	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	14.93	1.5	5	0.5	0.5	No
Q1800290	Sag	1.8 m lintel	14.19	1.5	5	0.5	0.5	No
Q1800280J	OnGrade	RM. 7 Grated Pit	14.4	1.5	-	-	0.5	Yes
Q1800275J	OnGrade	RM. 7 Grated Pit	14.54	1.5	-	-	0.5	Yes
Q1800270	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	14.16	1.5	5	0.5	0.5	No
Q1800260	OnGrade	RM. 7 Grated Pit	13.92	1.5	-	-	0.5	No
Q1800250J	OnGrade	RM. 7 Grated Pit	13.9	1.5	-	-	0.5	Yes
Q1800230	OnGrade	1.8 m lintel	13.79	1.5	-	-	0.5	Yes
Q1800220	OnGrade	1.8 m lintel	13.54	1.5	-	-	0.5	No
Q1800210J	OnGrade	RM. 7 Grated Pit	13.6	1.5	-	-	0.5	Yes
Q1800200	OnGrade	1.8 m lintel	13.5	1.5	-	-	0.5	No
Q1800180	OnGrade	1.8 m lintel	12.99	1.5	-	-	0.5	No
Q1800170	OnGrade	1.8 m lintel	12.91	1.5	-	-	0.5	No
Q1800160	Sag	1.8 m lintel	12.66	1.5	5	0.5	0.5	No
Q144040J	OnGrade	RM. 7 Grated Pit	33.5	4.8	-	-	0.5	Yes
Q144030	OnGrade	1.8 m lintel	32.91	1.5	-	-	0.5	No
Q144020	OnGrade	1.8 m lintel	31.1	1.5	-	-	0.5	No
Q144010	OnGrade	1.8 m lintel	30.11	1.5	-	-	0.5	No
Q141050J	OnGrade	RM. 7 Grated Pit	28.5	1.5	-	-	0.5	Yes
Q141040	OnGrade	1.8 m lintel	28.35	1.5	-	-	0.5	No
Q141030	Sag	3.0 m lintel	27.06	1.5	5	0.5	0.5	No
Q141020	OnGrade	1.8 m lintel	27.17	1.5	-	-	0.5	No
Q141010J	OnGrade	RM. 7 Grated Pit	27	1.5	-	-	0.5	Yes
H13020	Sag	1.8 m lintel	46.25	4.8	5	0.5	0.5	No
H13010	Sag	2.4 m lintel	46.05	1.5	5	0.5	0.5	No
H12010	OnGrade	1.8 m lintel	42.9	1.5	-	-	0.5	No
Q1410110	OnGrade	1.2 m lintel	33.89	1.5	-	-	0.5	No
Q1410100	OnGrade	1.2 m lintel	33.45	1.5	-	-	0.5	No
Q141090	OnGrade	1.2 m lintel	30.63	1.5	-	-	0.5	No
Q141080	OnGrade	1.2 m lintel	28.96	1.5	-	-	0.5	No

Pit Name	Pit Type	Pit Size	Surface Elevation	Ku	Ponding Vol		Blocking Factor	Bolt down lid
Q141060J	OnGrade	RM. 7 Grated Pit	28.43	1.5	-		0.5	Yes
Q208010	Sag	1.2 m lintel	12.98	4.8	5	0.5	0.5	No
Q127010	Sag	3.0 m lintel	25.24	4.8	5	0.5	0.5	No
Q123020J	OnGrade	RM. 7 Grated Pit	25.6	1.5			0.5	Yes
Q123010	Sag	1.8 m lintel	25.5	1.5	5	0.5	0.5	No
Q65010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \end{aligned}$	17.64	4.8	5	0.5	0.5	No
Q66010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	17.86	4.8	5	0.5	0.5	No
Q1800470	Sag	1.2 m lintel	26.02	4.8	5	0.5	0.5	No
Q1800460J	OnGrade	RM. 7 Grated Pit	26.2	1.5	-	-	0.5	Yes
Q1800450	OnGrade	0.9 m lintel	25.57	1.5	-	-	0.5	No
Q1800440	Sag	0.9 m lintel	25.2	1.5	5	0	0.5	No
Q1800430	OnGrade	RM. 7 Grated Pit	23.7	1.5	-		0.5	Yes
Q1800425J	OnGrade	RM. 7 Grated Pit	23.65	1.5	-	-	0.5	Yes
Q1800420J	OnGrade	RM. 7 Grated Pit	21.47	1.5	-	-	0.5	Yes
Q1800410	OnGrade	1.8 m lintel	21.47	1.5	-	-	0.5	No
Q1800400	Sag	1.8 m lintel	21.27	1.5	5	0.5	0.5	No
Q1800390	Sag	1.8 m lintel	21.09	1.5	5	0.5	0.5	No
Q1800380	OnGrade	1.8 m lintel	18.01	1.5	-	-	0.5	No
Q1800370	Sag	0.9 m lintel	18.18	1.5	5	0	0.5	No
Q240010	OnGrade	1.8 m lintel	25.98	4.8	-		0.5	No
Q238040	Sag	1.8 m lintel	30	4.8	5	0.5	0.5	No
Q238030	Sag	1.8 m lintel	29.92	1.5	5	0.5	0.5	No
Q238020	OnGrade	1.8 m lintel	25.36	1.5	-	-	0.5	No
Q238010	Sag	1.8 m lintel	25.05	1.5	5	0.5	0.5	No
Q239010	Sag	1.8 m lintel	25.16	4.8	5	0.5	0.5	No
Q234010	Sag	1.8 m lintel	21.23	1.5	5	0	0.5	No
Q233010	Sag	1.8 m lintel	21.21	4.8	5	0.5	0.5	No
Q235010	Sag	1.8 m lintel	21.45	4.8	5	0.5	0.5	No
Q236050	OnGrade	1.2 m lintel	23.2	4.8	-	-	0.5	No
Q236030	Sag	0.9 m lintel	23.33	1.5	5	0.5	0.5	No
Q236020J	OnGrade	RM. 7 Grated Pit	23.31	1.5	-	-	0.5	Yes
Q236010	OnGrade	1.8 m lintel	22	1.5	-	-	0.5	No
Q237010	OnGrade	1.2 m lintel	23.16	4.8	-	-	0.5	No
Q231020	Sag	1.8 m lintel	18.3	4.8	5	0.5	0.5	No
Q231010J	OnGrade	RM. 7 Grated Pit	18.3	1.5	-	-	0.5	Yes
Q232010	OnGrade	1.8 m lintel	18.31	4.8	-		0.5	No
Q210010	OnGrade	1.8 m lintel	15.92	4.8	-	-	0.5	No
Q207070	OnGrade	RM. 7 Grated Pit	16.24	1.5	-	-	0.5	Yes
Q209010	Sag	1.2 m lintel	14.07	4.8	5	0.5	0.5	No
Q225010	Sag	1.8 m lintel	14.9	4.8	5	0.5	0.5	No
Q224010	OnGrade	1.8 m lintel	14.97	4.8	-	-	0.5	No
Q226010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	15.06	4.8	5	0.5	0.5	No
Q228010	Sag	1.8 m lintel	16.18	4.8	5	0.5	0.5	No
Q227010	OnGrade	1.8 m lintel	15.75	4.8	-	-	0.5	No
Q229010	Sag	1.8 m lintel	16.16	4.8	5	0.5	0.5	No
Q230020	OnGrade	1.8 m lintel	17.05	4.8	-	-	0.5	No
Q60010	OnGrade	1.8 m lintel	17.47	4.8	-	-	0.5	No
Q59010J	OnGrade	RM. 7 Grated Pit	17.48	1.5	-	-	0.5	Yes
Q61010	OnGrade	1.8 m lintel	17.45	4.8	-	-	0.5	No
Q59020J	OnGrade	RM. 7 Grated Pit	17.47	1.5	-	-	0.5	Yes
Q62010	OnGrade	1.8 m lintel	17.22	4.8	-	-	0.5	No
Q80010	OnGrade	1.8 m lintel	17.09	4.8	-	-	0.5	No
Q67010	OnGrade	1.8 m lintel	17.88	4.8	-	-	0.5	No
Q68010	OnGrade	1.8 m lintel	19.99	4.8	-	-	0.5	No
Q81020	Sag	1.8 m lintel	19	4.8	5	0.5	0.5	No
Q81010	Sag	1.8 m lintel	18.92	1.5	5	0.5	0.5	No
Q86030	OnGrade	1.8 m lintel	29.21	4.8	-	-	0.5	No
Q86020	Sag	3.6 m lintel	28.33	1.5	5	0.5	0.5	No
Q86010J	OnGrade	RM. 7 Grated Pit	28	1.5	-	-	0.5	Yes
Q85510	OnGrade	1.8 m lintel	27.75	4.8	-	-	0.5	No
Q820150	Sag	1.8 m lintel	29.02	4.8	5	0.5	0.5	No
Q820140	OnGrade	3.6 m lintel	28.89	1.5	-	-	0.5	No
Q820130J	OnGrade	RM. 7 Grated Pit	29	1.5	-	-	0.5	Yes
Q820120	OnGrade	1.8 m lintel	28.35	1.5	-	-	0.5	No
Q820110	Sag	3.6 m lintel	27.92	1.5	5	0.5	0.5	No
Q820100	OnGrade	3.6 m lintel	27.76	1.5	-	-	0.5	No
Q82090J	OnGrade	RM. 7 Grated Pit	28.04	1.5	-	-	0.5	Yes
Q82080	Sag	3.0 m lintel	27.36	1.5	5	0.5	0.5	No
Q82070	Sag	3.0 m lintel	27.38	1.5	5	0.5	0.5	No
Q82060	OnGrade	RM. 7 Grated Pit	27.43	1.5	-	-	0.5	Yes
Q93010	OnGrade	1.8 m lintel	28.09	4.8	-	-	0.5	No
Q870110	OnGrade	1.8 m lintel	27.86	1.5	-	-	0.5	No
Q870100	Sag	3.0 m lintel	26.03	1.5	5	0.5	0.5	No
Q87090J	OnGrade	RM. 7 Grated Pit	26.25	1.5	-	-	0.5	Yes
Q87080J	OnGrade	RM. 7 Grated Pit	25.9	1.5	-	-	0.5	Yes
Q87070	OnGrade	RM. 7 Grated Pit	24.4	1.5	-	-	0.5	No
Q87060	OnGrade	1.8 m lintel	24.05	1.5	-	-	0.5	No
Q87050	OnGrade	1.8 m lintel	22.3	1.5	-	-	0.5	No
Q87040J	OnGrade	RM. 7 Grated Pit	22.2	1.5	-	-	0.5	Yes
Q87030	OnGrade	1.8 m lintel	21.94	1.5	-	-	0.5	No

Pit Name	Pit Type	Pit Size	Surface Elevation	Ku	Ponding Vol	Max Ponding Depth	Blocking Factor	Bolt down lid
Q87020	OnGrade	1.8 m lintel	21.3	1.5	-	-	0.5	No
Q87010	OnGrade	RM. 7 Grated Pit	21.25	1.5	-	-	0.5	Yes
Q94010	OnGrade	1.8 m lintel	31.14	4.8	-	-	0.5	No
Q870140	OnGrade	1.8 m lintel	31.07	1.5	-	-	0.5	No
Q870130	Sag	1.8 m lintel	30.88	1.5	5	0.5	0.5	No
Q870120	OnGrade	1.8 m lintel	30.06	1.5	-	-	0.5	No
Q870200	OnGrade	1.8 m lintel	33.97	4.8	-	-	0.5	No
Q870190	OnGrade	1.8 m lintel	33.95	1.5	-	-	0.5	No
Q870180	Sag	1.8 m lintel	33.9	1.5	5	0.5	0.5	No
Q870170	OnGrade	1.8 m lintel	33.95	1.5	-	-	0.5	No
Q870160	OnGrade	0.9 m lintel	33.58	1.5	-	-	0.5	No
Q870150	OnGrade	0.9 m lintel	32.71	1.5	-		0.5	No
Q92010	OnGrade	1.8 m lintel	26.12	4.8	-	-	0.5	No
Q91010	OnGrade	1.8 m lintel	25.82	4.8	-	-	0.5	No
Q90010	OnGrade	1.8 m lintel	26.12	4.8	-	-	0.5	No
Q89010	Sag	1.8 m lintel	22.4	4.8	5	0.5	0.5	No
Q88010	OnGrade	1.8 m lintel	22.55	4.8	-	-	0.5	No
Q95020	Sag	1.8 m lintel	20.72	4.8	5	0.5	0.5	No
Q100030	OnGrade	2.4 m lintel	23.87	4.8	-	-	0.5	No
Q100020	Sag	1.8 m lintel	21.87	1.5	5	0.5	0.5	No
Q100010	OnGrade	1.8 m lintel	21.87	1.5	-	-	0.5	No
Q103070	Sag	3.0 m lintel	28.51	4.8	1	0.5	0.5	No
Q103060J	OnGrade	RM. 7 Grated Pit	28.9	1.5	-	-	0.5	Yes
Q103050J	OnGrade	RM. 7 Grated Pit	28.2	1.5	-	-	0.5	Yes
Q103040J	OnGrade	RM. 7 Grated Pit	27.25	1.5	-	-	0.5	Yes
Q103030J	OnGrade	RM. 7 Grated Pit	26.55	1.5	-	-	0.5	Yes
Q103020	OnGrade	3.0 m lintel	26.28	1.5	-	-	0.5	No
Q103010	OnGrade	3.0 m lintel	26.21	1.5	-	-	0.5	No
Q101050	OnGrade	1.8 m lintel	25.76	1.5	-	-	0.5	No
Q101040	Sag	3.0 m lintel	23.03	1.5	5	0.5	0.5	No
Q101030	Sag	0.9 m lintel	22.96	1.5	5	0.5	0.5	No
Q125020	OnGrade	1.8 m lintel	26.06	4.8	-	-	0.5	No
Q125010	OnGrade	1.8 m lintel	25.33	1.5	-	-	0.5	No
Q122020	Sag	1.8 m lintel	23.96	4.8	5	0.5	0.5	No
Q122010	Sag	1.8 m lintel	24	1.5	5	0.5	0.5	No
Q140010	OnGrade	0.9 m lintel	26.1	1.5	-	-	0.5	No
Q139010	OnGrade	RM. 7 Grated Pit	26.15	1.5	-		0.5	No
Q139005J	OnGrade	RM. 7 Grated Pit	26.45	1.5	-	-	0.5	Yes
Q126010	Sag	3.0 m lintel	25.26	4.8	5	0.5	0.5	No
Q139060	OnGrade	RM. 7 Grated Pit	28.77	4.8	-	-	0.5	No
Q139050	OnGrade	RM. 7 Grated Pit	28.48	1.5	-	-	0.5	No
Q139040	OnGrade	RM. 7 Grated Pit	27.97	1.5	-	-	0.5	No
Q139030	Sag	0.9 m lintel	27.53	1.5	5	0.5	0.5	No
Q1060130	OnGrade	1.2 m lintel	31.01	4.8	-	-	0.5	No
Q1060120	OnGrade	1.2 m lintel	30.41	1.5	-	-	0.5	No
Q1060110	OnGrade	1.2 m lintel	30.25	1.5	-	-	0.5	No
Q205010	OnGrade	1.2 m lintel	12.3	4.8	-	-	0.5	No
Q204010	Sag	1.2 m lintel	12.22	4.8	5	0.5	0.5	No
Q215020	Sag	1.8 m lintel	12.84	1.5	5	0	0.5	No
Q215010J	OnGrade	RM. 7 Grated Pit	13.16	1.5	-	-	0.5	Yes
Q216010	Sag	1.2 m lintel	12.97	4.8	5	0.5	0.5	No
Q16040	OnGrade	1.8 m lintel	13.25	1.5	-	-	0.5	No
Q16030	OnGrade	1.8 m lintel	13.15	1.5	-	-	0.5	No
Q16010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	12.83	1.5	5	0.5	0.5	No
Q14035J	OnGrade	RM. 7 Grated Pit	12.92	1.5	-	-	0.5	Yes
Q14030J	OnGrade	RM. 7 Grated Pit	13	1.5	-	-	0.5	Yes
Q14020	OnGrade	1.8 m lintel	12.71	1.5	-	-	0.5	No
Q14010	OnGrade	0.9 m lintel	12.25	1.5	-	-	0.5	No
Q19020	OnGrade	1.8 m lintel	12.91	4.8	-	-	0.5	No
Q19010	OnGrade	1.8 m lintel	12.6	1.5	-	-	0.5	No
Q18910	OnGrade	3.6 m lintel	12.71	4.8	-	-	0.5	No
Q189030	OnGrade	1.8 m lintel	11.88	4.8	-	-	0.5	No
Q189020J	OnGrade	RM. 7 Grated Pit	12	1.5	-	-	0.5	Yes
Q189010J	OnGrade	RM. 7 Grated Pit	11.35	1.5	-	-	0.5	Yes
Q188030	OnGrade	1.8 m lintel	11.22	1.5	-	-	0.5	No
Q188020	OnGrade	1.8 m lintel	10.58	1.5	-	-	0.5	No
Q188010	OnGrade	0.9 m lintel	10.51	1.5	-	-	0.5	No
Q200010	Sag	1.8 m lintel	11.84	4.8	5	0.5	0.5	No
Q190020	OnGrade	1.2 m lintel	11.86	4.8	-	-	0.5	No
Q188050	OnGrade	1.8 m lintel	11.87	4.8	-	-	0.5	No
Q188040J	OnGrade	0.9 m lintel	11.68	1.5	-	-	0.5	No
Q246020J	OnGrade	RM. 7 Grated Pit	11.85	4.8	-	-	0.5	Yes
Q246010	OnGrade	0.9 m lintel	11.31	1.5	-	-	0.5	No
Q241080J	OnGrade	RM. 7 Grated Pit	11.36	1.5	-	-	0.5	Yes
Q241070	OnGrade	0.9 m lintel	11.19	1.5	-	-	0.5	No
Q241060	Sag	1.8 m lintel	10.1	1.5	5	0.5	0.5	No
Q241050	Sag	3.0 m lintel	10.08	1.5	5	0.5	0.5	No
Q241040J	OnGrade	RM. 7 Grated Pit	10.43	1.5	-	-	0.5	Yes
Q241030J	OnGrade	RM. 7 Grated Pit	10.45	1.5	-	-	0.5	Yes
Q241020	OnGrade	1.8 m lintel	9.91	1.5	-	-	0.5	Yes
Q241010J	OnGrade	RM. 7 Grated Pit	9.95	1.5	-	-	0.5	Yes
Q241000	Node		9.62	-	-	-	-	-

Pit Name	Pit Type	Pit Size	Surface Elevation	Ku	Ponding Vol		Blocking Factor	Bolt down lid
Q244050	OnGrade	1.8 m lintel	11.08	4.8	-		0.5	No
Q244040	Sag	0.9 m lintel	10.8	1.5	5	0.5	0.5	No
Q244030	Sag	0.9 m lintel	10.81	1.5	5	0.5	0.5	No
Q244020J	OnGrade	RM. 7 Grated Pit	11.4	1.5	-		0.5	Yes
Q244010	OnGrade	RM. 7 Grated Pit	10.75	1.5	-	-	0.5	Yes
Q2070	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	12.08	1.5	5	0.5	0.5	No
Q2060J	OnGrade	RM. 7 Grated Pit	11.95	1.5	-	-	0.5	Yes
Q2080	Sag	1.8 m lintel	11.92	1.5	5	0	0.5	No
Q13010	OnGrade	1.2 m lintel	12.35	4.8	-	-	0.5	No
Q2055	OnGrade	1.8 m lintel	12.05	1.5	-	-	0.5	No
Q2050	OnGrade	1.2 m lintel	12.66	1.5	-	-	0.5	No
Q2040	OnGrade	RM. 7 Grated Pit	12	1.5	-		0.5	No
Q2030J	OnGrade	RM. 7 Grated Pit	12.43	1.5	-	-	0.5	Yes
Q2020	Sag	1.8 m lintel	11.05	1.5	5	0.5	0.5	No
Q2010J	OnGrade	RM. 7 Grated Pit	11.65	1.5	-	-	0.5	Yes
Q2000	Node	-	6.2		-	-	-	-
Q15010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \end{aligned}$	13	4.8	5	0.5	0.5	No
Q17020	Sag	1.8 m lintel	13	4.8	5	0.5	0.5	No
Q17010	OnGrade	3.6 m lintel	12.94	1.5	-	-	0.5	No
Q14040	OnGrade	1.8 m lintel	12.94	1.5	-	-	0.5	No
Q14070	OnGrade	1.8 m lintel	14.99	4.8	-	-	0.5	No
Q14060	OnGrade	0.9 m lintel	14.53	1.5	-	-	0.5	No
Q14050	OnGrade	1.8 m lintel	12.96	1.5	-	-	0.5	No
Q30160	OnGrade	3.0 m lintel	14.99	4.8	-	-	0.5	No
Q30150	OnGrade	RM. 7 Grated Pit	14.29	1.5	-	-	0.5	Yes
Q30140	OnGrade	1.8 m lintel	14.48	1.5	-	-	0.5	No
Q30130	OnGrade	1.8 m lintel	14.42	1.5	-	-	0.5	No
Q30120	OnGrade	1.8 m lintel	14.27	1.5	-	-	0.5	No
Q30111J	Sag	3.0 m lintel	14.31	1.5	5	0.5	0.5	No
Q30110	OnGrade	1.8 m lintel	14.26	1.5	-	-	0.5	No
Q30100	OnGrade	1.8 m lintel	13.92	1.5	-	-	0.5	No
Q3090	OnGrade	3.0 m lintel	13.96	1.5	-	-	0.5	No
Q3080	OnGrade	1.8 m lintel	13.99	1.5	-	-	0.5	No
Q3070	OnGrade	1.8 m lintel	13.26	1.5	-	-	0.5	No
Q3071	OnGrade	RM. 7 Grated Pit	13.34	1.5	-	-	0.5	Yes
Q3060	OnGrade	1.8 m lintel	13.13	1.5	-	-	0.5	No
Q3050	OnGrade	1.8 m lintel	12.58	1.5	-	-	0.5	No
Q3040	OnGrade	1.8 m lintel	12.21	1.5	-	-	0.5	No
Q3030	Sag	1.8 m lintel	12.02	1.5	5	0.5	0.5	No
Q3020	OnGrade	1.8 m lintel	12.19	1.5	-	-	0.5	No
Q3010	OnGrade	1.8 m lintel	12.12	1.5	-	-	0.5	No
Q11020	OnGrade	1.8 m lintel	14.7	4.8	-	-	0.5	No
Q11010	OnGrade	1.8 m lintel	14.68	1.5	-	-	0.5	No
Q9030	OnGrade	1.8 m lintel	14.29	4.8	-	-	0.5	No
Q10010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	14.32	4.8	5	0.5	0.5	No
Q7010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	13.97	4.8	5	0.5	0.5	No
Q12010	OnGrade	1.2 m lintel	12.02	4.8	-	-	0.5	No
Q6010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	13.29	4.8	5	0.5	0.5	No
Q5010	OnGrade	0.9 m lintel	13.35	4.8	-	-	0.5	No
Q4020	OnGrade	1.2 m lintel	13.31	1.5	-	-	0.5	No
Q4010	OnGrade	1.2 m lintel	13.3	1.5	-	-	0.5	No
Q4040	OnGrade	1.2 m lintel	13.35	1.5	-	-	0.5	No
Q4030	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	13.34	1.5	5	0.5	0.5	No
Q1110	Sag	1.2 m lintel	11.24	1.5	5	0.5	0.5	No
Q22010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	13.56	4.8	5	0.5	0.5	No
Q21010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	13.76	4.8	5	0.5	0.5	No
Q23010	OnGrade	1.8 m lintel	14.33	4.8	-	-	0.5	No
Q31020	OnGrade	3.6 m lintel	16.19	4.8	-	-	0.5	No
Q31010	Sag	3.6 m lintel	16.12	1.5	5	0.5	0.5	No
Q24010J	OnGrade	RM. 7 Grated Pit	15.78	1.5	-	-	0.5	Yes
Q48010	OnGrade	1.8 m lintel	14.34	1.5	-	-	0.5	No
Q37010	Sag	3.0 m lintel	18.43	4.8	5	0.5	0.5	No
Q24040J	OnGrade	RM. 7 Grated Pit	18.4	1.5	-	-	0.5	Yes
Q24030J	OnGrade	RM. 7 Grated Pit	18.2	1.5	-	-	0.5	Yes
Q24020	OnGrade	1.8 m lintel	16.13	1.5	-	-	0.5	No
Q36010	OnGrade	1.8 m lintel	18.54	4.8	-	-	0.5	No
Q35010	OnGrade	1.8 m lintel	19.55	4.8	-	-	0.5	No
Q33030	OnGrade	1.8 m lintel	19.66	1.5	-	-	0.5	No
Q33020J	OnGrade	RM. 7 Grated Pit	19.4	1.5	-	-	0.5	Yes
Q33010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	18.37	1.5	5	0.5	0.5	No
Q34010	OnGrade	1.8 m lintel	19.54	4.8	-	-	0.5	No
Q33060	OnGrade	1.8 m lintel	24.1	4.8	-	-	0.5	No
Q33050	OnGrade	1.8 m lintel	20.64	1.5	-	-	0.5	No
Q33045J	OnGrade	RM. 7 Grated Pit	20.63	1.5	-	-	0.5	Yes

Pit Name	Pit Type	Pit Size	Surface Elevation	Ku	Ponding Vol	Max Ponding Depth	Blocking Factor	Bolt down lid
Q33040	Sag	1.8 m lintel	19.35	1.5	5	0.5	0.5	No
Q39010	OnGrade	1.8 m lintel	21.14	4.8	-	-	0.5	No
Q24050J	OnGrade	RM. 7 Grated Pit	21.25	1.5	-		0.5	Yes
Q38020	OnGrade	RM. 7 Grated Pit	21.16	4.8	-	-	0.5	No
Q38010	OnGrade	1.8 m lintel	21.09	1.5	-	-	0.5	No
Q40020	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	23.8	4.8	5	0.5	0.5	No
Q40010	OnGrade	1.8 m lintel	23.78	1.5	-	-	0.5	No
Q24060J	OnGrade	RM. 7 Grated Pit	24.14	1.5	-	-	0.5	Yes
Q41010	OnGrade	1.8 m lintel	23.99	4.8	-	-	0.5	No
Q42010	OnGrade	0.9 m lintel	26.76	4.8	-	-	0.5	No
Q24070J	OnGrade	RM. 7 Grated Pit	26.96	1.5	-	-	0.5	Yes
Q43010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	27.49	4.8	5	0.5	0.5	No
Q24090	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	27.53	1.5	5	0.5	0.5	No
Q24080J	OnGrade	RM. 7 Grated Pit	28.3	1.5	-	-	0.5	Yes
Q44010	OnGrade	1.8 m lintel	28.95	4.8	-	-	0.5	No
Q240100J	OnGrade	RM. 7 Grated Pit	28.9	1.5	-	-	0.5	Yes
Q45010	OnGrade	1.8 m lintel	28.82	4.8	-	-	0.5	No
Q240105J	OnGrade	1.8 m lintel	28.7	1.5	-	-	0.5	Yes
Q240130	Sag	1.8 m lintel	28.1	4.8	5	0.5	0.5	No
Q240120	Sag	0.9 m lintel	28.04	1.5	5	0.5	0.5	No
Q240110	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	28.75	1.5	5	0.5	0.5	No
Q53050	OnGrade	1.8 m lintel	22.85	4.8	-	-	0.5	No
Q53040	OnGrade	1.8 m lintel	22.62	1.5	-	-	0.5	No
Q53030	OnGrade	1.8 m lintel	18.58	1.5	-		0.5	No
Q53020	OnGrade	1.8 m lintel	16.36	1.5	-	-	0.5	No
Q53015	OnGrade	1.8 m lintel	15.75	1.5	-	-	0.5	No
Q53010	Sag	1.8 m lintel	15.44	1.5	5	0.5	0.5	No
Q25090	OnGrade	1.8 m lintel	23.44	4.8	-	-	0.5	No
Q25080	OnGrade	1.8 m lintel	23.3	1.5	-	-	0.5	No
Q25070	OnGrade	1.8 m lintel	20.54	1.5	-		0.5	No
Q25060	OnGrade	1.8 m lintel	19.1	1.5	-	-	0.5	No
Q25050	OnGrade	1.8 m lintel	17.28	1.5	-	-	0.5	No
Q25040	OnGrade	1.8 m lintel	15.63	1.5	-	-	0.5	No
Q25030	Sag	1.8 m lintel	15.5	1.5	5	0.5	0.5	No
Q25020J	OnGrade	RM. 7 Grated Pit	15.6	1.5	-	-	0.5	Yes
Q25010J	OnGrade	RM. 7 Grated Pit	15.98	1.5	-	-	0.5	Yes
Q30010	OnGrade	1.8 m lintel	20.79	4.8	-	-	0.5	No
Q29010	OnGrade	1.8 m lintel	19.2	4.8	-	-	0.5	No
Q55010	OnGrade	1.8 m lintel	18.77	4.8	-	-	0.5	No
Q54010	OnGrade	1.8 m lintel	16.56	4.8	-	-	0.5	No
Q28010	OnGrade	1.8 m lintel	17.38	4.8	-	-	0.5	No
Q27010	OnGrade	1.8 m lintel	15.47	4.8	-	-	0.5	No
Q26010J	OnGrade	RM. 7 Grated Pit	15.55	1.5	-	-	0.5	Yes
Q26020	OnGrade	1.2 m lintel	15.25	4.8	-	-	0.5	No
Q52010	Sag	1.8 m lintel	15.36	4.8	5	0.5	0.5	No
Q51010	OnGrade	1.8 m lintel	15.04	4.8	-	-	0.5	No
Q50010	OnGrade	1.8 m lintel	14.71	4.8	-	-	0.5	No
Q49010	OnGrade	1.8 m lintel	14.74	4.8	-	-	0.5	No
Q221020	OnGrade	1.8 m lintel	14.26	4.8	-	-	0.5	No
Q221010	OnGrade	1.8 m lintel	14.24	1.5	-	-	0.5	No
Q223010	OnGrade	1.8 m lintel	14.19	4.8	-	-	0.5	No
Q222010	OnGrade	1.8 m lintel	14.12	4.8	-	-	0.5	No
Q219010	OnGrade	1.8 m lintel	13.92	4.8	-	-	0.5	No
Q220010	OnGrade	1.8 m lintel	13.93	4.8	-	-	0.5	No
Q217010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \end{aligned}$	13.54	4.8	5	0.5	0.5	No
Q218010	OnGrade	1.8 m lintel	13.49	4.8	-	-	0.5	No
Q57010	Sag	1.8 m lintel	15.81	1.5	5	0.5	0.5	No
Q56010	Sag	1.8 m lintel	15.79	1.5	5	0.5	0.5	No
Q58010	OnGrade	1.2 m lintel	15.74	1.5	-	-	0.5	No
Q69010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	22.36	4.8	5	0.5	0.5	No
Q70060	Sag	$0.9 \mathrm{~m} \times 0.45 \mathrm{~m}$ Grated pit	25.63	1.5	5	0.5	0.5	No
Q70050	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	25.44	1.5	5	0.5	0.5	No
Q70040	Sag	1.8 m lintel	25.03	1.5	5	0.5	0.5	No
Q70030	Sag	1.8 m lintel	25.08	1.5	5	0.5	0.5	No
Q70020	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	24.85	1.5	5	0.5	0.5	No
Q70010	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \end{aligned}$	22.43	1.5	5	0.5	0.5	No
Q78010	OnGrade	1.8 m lintel	29.47	4.8	-	-	0.5	No
Q640170	Sag	1.8 m lintel	32.3	1.5	5	0.5	0.5	No
Q640166J	OnGrade	RM. 7 Grated Pit	32	1.5	-	-	0.5	Yes
Q640164J	OnGrade	RM. 7 Grated Pit	31.85	1.5	-	-	0.5	Yes
Q640162J	OnGrade	RM. 7 Grated Pit	31.35	1.5	-	-	0.5	Yes
Q79030	OnGrade	1.8 m lintel	33.92	1.5	-	-	0.5	No
Q79020	OnGrade	1.8 m lintel	33.94	1.5	-	-	0.5	No

Pit Name	Pit Type	Pit Size	Surface Elevation	Ku	Ponding Vol		Blocking Factor	Bolt down lid
G1278030	Sag	1.8 m lintel	8.99	4.8	5	0.5	0.5	No
G1278020	Sag	2.4 m lintel	8.92	1.5	5	0.5	0.5	No
G1278010	OnGrade	RM. 7 Grated Pit	9.5	1.5	-	-	0.5	Yes
G1278000	Node	-	7.5					
G158040	Sag	1.8 m lintel	8.44	4.8	5	0.5	0.5	No
G158030	Sag	2.4 m lintel	8.42	1.5	5	0.5	0.5	No
G158020	OnGrade	RM. 7 Grated Pit	8.85	1.5	-	-	0.5	Yes
G158010	Node	-	7.2		-	-	-	-
Q202010	OnGrade	3.0 m lintel	10.48	4.8	-	-	0.5	No
Q201010J	OnGrade	RM. 7 Grated Pit	11	1.5	-		0.5	Yes
Q203010	Sag	3.0 m lintel	10.22	4.8	5	0.5	0.5	No
Q201020	OnGrade	RM. 7 Grated Pit	10.5	1.5	-	-	0.5	Yes
Q201030	Sag	1.8 m lintel	10.15	4.8	5	0.5	0.5	No
Q187010	OnGrade	1.8 m lintel	10.02	4.8	-	-	0.5	No
Q185010	OnGrade	1.8 m lintel	9.75	4.8	-	-	0.5	No
Q186010	OnGrade	1.8 m lintel	9.88	1.5	-		0.5	No
Q242010	OnGrade	1.8 m lintel	9.84	4.8	-	-	0.5	No
Q243010	Sag	1.8 m lintel	9.71	4.8	5	0.5	0.5	No
Q183030	OnGrade	0.9 m lintel	9.63	4.8	-	-	0.5	No
Q183020	OnGrade	0.9 m lintel	9.92	1.5	-	-	0.5	No
Q183010	Sag	1.8 m lintel	9.76	1.5	5	0.5	0.5	No
Q182010	Sag	1.8 m lintel	10.2	4.8	5	0.5	0.5	No
Q181010	Sag	1.8 m lintel	10.04	4.8	5	0.5	0.5	No
Q245060	OnGrade	1.2 m lintel	10.37	4.8	-	-	0.5	No
Q245050	Sag	1.8 m lintel	10.37	1.5	5	0.5	0.5	No
Q245040	Sag	1.8 m lintel	10.38	1.5	5	0.5	0.5	No
Q245030	OnGrade	RM. 7 Grated Pit	10.24	1.5	-	-	0.5	No
Q245020	OnGrade	1.8 m lintel	10.23	1.5	-	-	0.5	No
Q245010	OnGrade	1.8 m lintel	10.18	1.5	-	-	0.5	No
Q152030	OnGrade	1.8 m lintel	29.15	4.8	-	-	0.5	No
Q152020	OnGrade	2.4 m lintel	28.49	1.5	-	-	0.5	No
Q152010	Sag	3.6 m lintel	28.3	1.5	5	0	0.5	No
Q104020	OnGrade	1.8 m lintel	30.63	4.8	-	-	0.5	No
Q104010	OnGrade	3.0 m lintel	30.45	1.5	-	-	0.5	No
Q101070	OnGrade	RM. 7 Grated Pit	30.25	1.5	-	-	0.5	No
Q101060	OnGrade	1.8 m lintel	26.4	1.5	-	-	0.5	No
Q105020	OnGrade	1.8 m lintel	33.48	4.8	-	-	0.5	No
Q105010	OnGrade	1.8 m lintel	33.3	1.5	-	-	0.5	No
Q101090	OnGrade	1.2 m lintel	32.98	1.5	-	-	0.5	No
Q101080	OnGrade	0.9 m lintel	31.09	1.5	-	-	0.5	No
Q1010140	Sag	1.8 m lintel	36.14	4.8	5	0.5	0.5	No
Q1010130	Sag	1.8 m lintel	36.1	1.5	5	0.5	0.5	No
Q1010120	OnGrade	1.8 m lintel	35.95	1.5	-	-	0.5	No
Q1010110	OnGrade	1.8 m lintel	35.78	1.5	-	-	0.5	No
Q1010100	OnGrade	1.8 m lintel	33.67	1.5	-	-	0.5	No
Q128010	OnGrade	1.8 m lintel	25.72	4.8	-	-	0.5	No
Q123030J	OnGrade	RM. 7 Grated Pit	25.6	1.5	-	-	0.5	Yes
Q124030	OnGrade	RM. 7 Grated Pit	25.76	4.8	-	-	0.5	No
Q124020	OnGrade	1.8 m lintel	25.54	1.5	-	-	0.5	No
Q124010	OnGrade	1.8 m lintel	25.29	1.5	-	-	0.5	No
Q129010	Sag	3.0 m lintel	27.61	4.8	5	0.5	0.5	No
Q123040J	OnGrade	RM. 7 Grated Pit	27.65	1.5	-	-	0.5	Yes
Q130010	OnGrade	1.8 m lintel	27.6	4.8	-	-	0.5	No
Q131010	OnGrade	1.8 m lintel	28.04	4.8	-	-	0.5	No
Q123050J	OnGrade	RM. 7 Grated Pit	28.15	1.5	-	-	0.5	Yes
Q132020	OnGrade	1.8 m lintel	30.24	4.8	-	-	0.5	No
Q132010	Sag	3.0 m lintel	29.93	1.5	5	0.5	0.5	No
Q123070J	OnGrade	RM. 7 Grated Pit	30.15	1.5	-	-	0.5	Yes
Q134010	OnGrade	1.8 m lintel	30.18	4.8	-	-	0.5	No
Q123080J	OnGrade	RM. 7 Grated Pit	30.2	1.5	-	-	0.5	Yes
Q133010	Sag	3.0 m lintel	30.01	4.8	5	0.5	0.5	No
Q135010	OnGrade	1.8 m lintel	30.32	4.8	-	-	0.5	No
Q136020	OnGrade	1.8 m lintel	32.24	4.8	-	-	0.5	No
Q136010	OnGrade	1.8 m lintel	32.09	1.5	-	-	0.5	No
Q1230100J	OnGrade	RM. 7 Grated Pit	31.55	1.5	-	-	0.5	Yes
Q138010	Sag	1.8 m lintel	35.02	4.8	5	0.5	0.5	No
Q1230130	OnGrade	1.8 m lintel	35.09	1.5	-	-	0.5	No
Q1230126J	OnGrade	RM. 7 Grated Pit	35.15	1.5	-	-	0.5	Yes
Q1230123J	OnGrade	RM. 7 Grated Pit	33.35	1.5	-	-	0.5	Yes
Q1230120J	OnGrade	RM. 7 Grated Pit	32.75	1.5	-	-	0.5	No
Q1230110J	OnGrade	RM. 7 Grated Pit	32.31	1.5	-	-	0.5	Yes
Q137030	Sag	1.8 m lintel	38.67	4.8	5	0.5	0.5	No
Q127020	Sag	1.8 m lintel	38.51	1.5	5	0.5	0.5	No
Q137010	OnGrade	RM. 7 Grated Pit	35.45	1.5	-	-	0.5	Yes
Q1230180	OnGrade	0.9 m lintel	39.27	4.8	-	-	0.5	No
Q1230170	OnGrade	RM. 7 Grated Pit	39.14	1.5	-	-	0.5	No
Q1230160J	OnGrade	RM. 7 Grated Pit	36.4	1.5	-	-	0.5	Yes
Q1230150	OnGrade	1.8 m lintel	35.98	1.5	-	-	0.5	No
Q1230140	OnGrade	1.8 m lintel	35.11	1.5	-	-	0.5	No
Q145010	OnGrade	1.2 m lintel	31.37	4.8	-	-	0.5	No
Q141070	Sag	3.0 m lintel	28.26	4.8	5	0.5	0.5	No
Q143010	OnGrade	1.8 m lintel	27.12	4.8	-	-	0.5	No
Q142040	OnGrade	RM. 7 Grated Pit	29.67	4.8	-	-	0.5	No

Pit Name	Pit Type	Pit Size	Surface Elevation	Ku	Ponding Vol	Max Ponding Depth	Blocking Factor	Bolt down lid
Q142030	OnGrade	1.8 m lintel	29	1.5	-	-	0.5	No
Q142020	OnGrade	1.8 m lintel	28.2	1.5	-	-	0.5	No
Q142010	OnGrade	1.8 m lintel	27.34	1.5	-	-	0.5	No
Q10590	Sag	3.0 m lintel	27.08	4.8	5	0.5	0.5	No
Q14710	OnGrade	3.0 m lintel	27.27	4.8	-	-	0.5	No
Q148010	Sag	3.6 m lintel	27.28	4.8	5	0.5	0.5	No
Q149010	OnGrade	1.8 m lintel	28.11	1.5	-	-	0.5	No
Q153010	OnGrade	1.8 m lintel	29.46	1.5	-	-	0.5	No
Q154010	OnGrade	2.4 m lintel	32.71	4.8	-	-	0.5	No
Q158010	OnGrade	1.8 m lintel	35.6	4.8	-	-	0.5	No
Q161020	Sag	1.8 m lintel	30.63	4.8	5	0.5	0.5	No
Q161010	OnGrade	1.8 m lintel	30.6	1.5	-	-	0.5	No
Q160020	OnGrade	RM. 7 Grated Pit	30.5	1.5	-	-	0.5	No
Q160010	OnGrade	RM. 7 Grated Pit	29.4	1.5	-	-	0.5	No
Q10630	Sag	1.8 m lintel	29.43	1.5	5	0.5	0.5	No
Q10620J	OnGrade	RM. 7 Grated Pit	28.5	1.5	-	-	0.5	Yes
Q162010	OnGrade	1.8 m lintel	31.24	4.8	-	-	0.5	No
Q160030	OnGrade	1.8 m lintel	31.1	1.5	-	-	0.5	No
Q160060	OnGrade	1.8 m lintel	33.03	4.8	-	-	0.5	No
Q160050	OnGrade	RM. 7 Grated Pit	32.6	1.5	-	-	0.5	No
Q160040	OnGrade	1.8 m lintel	31.72	1.5	-	-	0.5	No
Q163020	Sag	1.8 m lintel	32.74	4.8	5	1	0.5	No
Q163010	Sag	1.8 m lintel	32.71	1.5	5	1	0.5	No
Q165030	Sag	3.0 m lintel	32.79	4.8	5	0.5	0.5	No
Q165020	Sag	3.0 m lintel	32.59	1.5	5	0.5	0.5	No
Q165010J	OnGrade	RM. 7 Grated Pit	31.4	1.5	-	-	0.5	Yes
Q10670J	OnGrade	RM. 7 Grated Pit	31.15	1.5	-	-	0.5	No
Q10660J	OnGrade	RM. 7 Grated Pit	30.55	1.5	-	-	0.5	Yes
Q10650J	OnGrade	RM. 7 Grated Pit	31.3	1.5	-	-	0.5	Yes
Q10640	Sag	2.4 m lintel	29.17	1.5	5	0.5	0.5	No
Q166030	OnGrade	1.8 m lintel	35.87	1.5	-	-	0.5	No
Q166020	OnGrade	1.8 m lintel	35.09	1.5	-	-	0.5	No
Q166010	OnGrade	1.8 m lintel	34.85	1.5	-	-	0.5	No
Q10680J	OnGrade	RM. 7 Grated Pit	31.8	1.5	-	-	0.5	Yes
Q167010	OnGrade	1.8 m lintel	34.94	1.5	-		0.5	No
Q169010	Sag	3.0 m lintel	32.35	4.8	5	0.5	0.5	No
Q168010	Sag	1.8 m lintel	32.4	1.5	5	0.5	0.5	No
Q10690J	OnGrade	RM. 7 Grated Pit	32.35	1.5	-	-	0.5	Yes
Q168020	OnGrade	1.8 m lintel	32.49	4.8	-	-	0.5	No
Q159010	OnGrade	1.8 m lintel	36.05	4.8	-	-	0.5	No
Q1500150	OnGrade	RM. 7 Grated Pit	38.85	4.8	-	-	0.5	No
Q10790	Sag	2.4 m lintel	39.69	4.8	5	0.5	0.5	No
Q10780	Sag	1.8 m lintel	39.67	1.5	5	0.5	0.5	No
Q10776J	OnGrade	RM. 7 Grated Pit	38	1.5	-	-	0.5	Yes
Q10773J	OnGrade	RM. 7 Grated Pit	37.8	1.5	-	-	0.5	Yes
Q10770J	OnGrade	RM. 7 Grated Pit	36.4	1.5	-	-	0.5	Yes
Q10760	Sag	1.8 m lintel	36.6	1.5	5	0.5	0.5	No
Q10750	Sag	1.8 m lintel	36.34	1.5	5	0.5	0.5	No
Q10740J	OnGrade	RM. 7 Grated Pit	34.95	1.5	-	-	0.5	Yes
Q10730J	OnGrade	RM. 7 Grated Pit	34.9	1.5	-	-	0.5	Yes
Q10720	OnGrade	3.0 m lintel	33.77	1.5	-	-	0.5	No
Q10710	OnGrade	1.8 m lintel	32.96	1.5	-	-	0.5	No
Q10700	OnGrade	1.8 m lintel	32.87	1.5	-	-	0.5	No
Q212020	OnGrade	SA1 (Type 2)	18.5	4.8	-	-	0	No
Q212010	OnGrade	SA1 (Type 2)	18.5	1.5	-	-	0	No
Q2170140	OnGrade	SA1 (Type 2)	18.3	1.5	-	-	0	No
Q2070130	OnGrade	SA1 (Type 2)	25	1.5	-	-	0	No
Q2070120	OnGrade	1.8 m lintel	17	1.5	-	-	0.5	No
Q2070110	Sag	1.8 m lintel	15.67	1.5	5	0.5	0.5	No
Q2070100J	OnGrade	1.8 m lintel	15.45	1.5	-	-	0.5	Yes
Q207090J	OnGrade	RM. 7 Grated Pit	15.63	1.5	-	-	0.5	Yes
Q207080	OnGrade	1.8 m lintel	15.28	1.5	-	-	0.5	No
Q213020	OnGrade	SA1 (Type 2)	21.5	4.8	-	-	0	No
Q213010	OnGrade	SA1 (Type 2)	21.5	1.5	-	-	0	No
Q2170180	OnGrade	SA1 (Type 2)	21.5	1.5	-	-	0	No
Q2070170	OnGrade	SA1 (Type 2)	21.5	1.5	-	-	0	No
Q2070160	OnGrade	SA1 (Type 2)	20.05	1.5	-	-	0	No
Q2070150	OnGrade	SA1 (Type 2)	18.65	1.5	-	-	0	No
Q2070230	OnGrade	SA1 (Type 2)	24.55	4.8	-	-	0	No
Q2070220	OnGrade	SA1 (Type 2)	24.6	1.5	-	-	0	Yes
Q2070210	OnGrade	SA1 (Type 2)	24.1	1.5	-	-	0	No
Q2070200	OnGrade	SA1 (Type 2)	22.45	1.5	-	-	0	No
Q2070190	OnGrade	SA1 (Type 2)	21.55	1.5	-	-	0	No
Q214010	OnGrade	SA1 (Type 2)	24.75	4.8	-	-	0	No
Q2110100	OnGrade	SA1 (Type 2)	16.4	4.8	-	-	0	No
Q2410100J	OnGrade	RM. 7 Grated Pit	11.75	1.5	-	-	0.5	Yes
Q241090	OnGrade	3.0 m lintel	11.08	1.5	-	-	0.5	No

Table A2: Detailed DRAINS Stormwater Pipe Data

Pipe Name	From Pit	To Pit	Length (m)	U/S IL	DIS IL	Slope (\%)	Nom. Diameter (mm)
Pipe 756	Q271050	Q271040	9.72	18.42	18.09	3.4	375
Pipe 755	Q271040	Q271030	83.00	17.79	16.21	1.9	375
Pipe 754	Q271030	Q271020	80.60	16.21	14.69	1.9	375
Pipe 753	Q271020	QIn2	19.13	14.69	14.60	0.5	375
Pipe 758	Q273010	Q271020	9.11	15.12	15.00	1.3	375
Pipe 757	Q274010	Q271030	9.80	16.71	16.60	1.1	375
Pipe 726	Q23005	Q23015J	5.53	29.68	29.53	2.7	375
Pipe 727	Q23015J	Q46005J	11.38	29.38	29.23	1.3	375
Pipe 687	Q46005J	Q46001	7.81	29.15	28.95	2.6	450
Pipe 665	Q46001	Qin1	57.29	28.95	27.45	2.6	450
Pipe 682	Q117030	Q117010	19.89	31.80	31.70	0.5	375
Pipe 683	Q117010	Q117020	6.30	31.70	31.63	1.1	375
Pipe 627	Q117020	Q1100140	12.34	31.63	31.29	2.8	375
Pipe 629	Q1100140	Q1100130	30.14	30.96	30.66	1.0	525
Pipe 577	Q1100130	Q1100120	29.98	30.66	30.34	1.1	525
Pipe 630	Q1100120	Q1100110	30.16	30.34	30.04	1.0	525
Pipe 578	Q1100110	Q1100100	30.02	30.04	29.79	0.8	525
Pipe 584	Q1100100	Q110090	30.38	29.79	29.38	1.4	600
Pipe 634	Q110090	Q110080	22.73	29.38	29.11	1.2	600
Pipe 585	Q110080	Q110070	32.46	29.11	28.15	3.0	600
Pipe 637	Q110070	Q110060	30.13	28.15	27.53	2.1	600
Pipe 588	Q110060	Q110050	28.79	27.22	26.46	2.6	600
Pipe 590	Q110050	Q110040	45.94	26.46	25.20	2.7	600
Pipe 591	Q110040	Q110030	35.91	24.69	23.60	3.0	600
Pipe 589	Q110030	Q110020	63.62	23.60	22.60	1.6	600
Pipe 594	Q110020	Q110010	49.61	22.60	22.11	1.0	750
Pipe 593	Q110010	Q10450J	38.66	22.60	22.20	1.0	750
Pipe 677	Q10450J	Q10440J	15.37	20.53	20.45	0.5	1800
Pipe 336	Q10440J	Q101010	43.70	20.45	20.20	0.6	1800
Pipe 475	Q101010	Q10420	21.64	20.11	19.96	0.7	1800
Pipe 335	Q10420	Q10410J	78.50	19.91	19.35	0.7	1800
Pipe 330	Q10410J	Q10400J	19.38	19.27	19.13	0.7	1800
Pipe 331	Q10400J	Q10390J	73.98	19.05	18.52	0.7	1800
Pipe 332	Q10390J	Q95010	28.17	18.45	18.26	0.7	1800
Pipe 469	Q95010	Q10380J	8.64	18.26	18.20	0.7	375
Pipe 333	Q10380J	Q10370	64.74	18.20	17.78	0.7	1800
Pipe 471	Q10370	Q10360J	16.43	17.78	17.67	0.7	1800
Pipe 334	Q10360J	Q10350J	88.06	17.67	17.06	0.7	1800
Pipe 337	Q10350J	Q10340	83.83	17.06	16.82	0.3	1800
Pipe 482	Q10340	Q10330	12.14	16.82	16.78	0.3	1800
Pipe 338	Q10330	Q10320	69.99	16.78	16.55	0.3	1800
Pipe 483	Q10320	Q10310	15.10	16.55	16.50	0.3	1800
Pipe 484	Q10310	Q10300	62.90	16.50	16.30	0.3	1800
Pipe 339	Q10300	Q10290	130.63	16.30	15.50	0.6	1800
Pipe 486	Q10290	Q10280	20.31	15.50	15.33	0.8	1800
Pipe 340	Q10280	Q10270J	71.90	15.33	14.90	0.6	1800
Pipe 488	Q10270J	Q10260J	8.72	14.90	14.85	0.6	1800
Pipe 343	Q10260J	Q10250	53.99	14.85	14.53	0.6	1800
Pipe 342	Q10250	Q10240J	47.56	14.53	14.25	0.6	1800
Pipe 713	Q10240J	Q10235J	5.56	14.25	14.22	0.5	1800
Pipe 494	Q10235J	Q10230J	12.98	14.22	14.15	0.5	1800
Pipe 341	Q10230J	Q10220J	41.38	14.15	13.90	0.6	1800
Pipe 315	Q10220J	Q10210J	51.81	13.90	13.60	0.6	1800
Pipe 707	Q10210J	Q10200J	10.14	13.60	13.54	0.6	1800
Pipe 314	Q10200J	Q10190	68.63	13.54	13.11	0.6	1800
Pipe 398	Q10190	Q10180	6.29	13.11	13.03	1.3	1800
Pipe 316	Q10180	Q10170	97.28	13.03	12.45	0.6	1800
Pipe 702	Q10170	Q10165J	18.07	12.45	12.35	0.6	1800
Pipe 704	Q10165J	Q10161	39.59	12.35	12.15	0.5	1800
Pipe 703	Q10161	Q10160J	31.51	12.15	11.97	0.6	1800
Pipe 317	Q10160J	Q10150J	7.94	11.97	11.93	0.5	1800
Pipe 321	Q10150J	Q10140	38.83	11.93	11.74	0.5	1800
Pipe 540	Q10140	Q10120J	35.61	11.74	11.56	0.5	1800
Pipe 320	Q10120J	Q10110J	105.12	11.56	11.10	0.4	1800
Pipe 712	Q10110J	Q10100J	11.33	11.10	11.05	0.4	375
Pipe 319	Q10100J	Q1090	102.08	11.05	10.60	0.4	1800
Pipe 322	Q1090	Q1080	12.65	10.60	10.45	1.2	1800
Pipe 752	Q1080	Q1075	22.64	10.45	10.30	0.7	1800
Pipe 323	Q1075	Q1070	51.24	10.30	9.95	0.7	1800
Pipe 324	Q1070	Q1050J	83.17	10.15	9.86	0.4	1800

Pipe Name	From Pit	To Pit	Length (m)	U/S IL	DIS IL	Slope (\%)	Nom. Diameter (mm)
Pipe 325	Q1050J	Q2410110	71.24	9.86	9.62	0.3	1800
Pipe 351	Q2410110	Q1040	97.22	9.21	7.77	1.5	1800
Pipe 329	Q2410110	Q2410100.	21.60	9.24	9.05	0.9	1800
Pipe 354	Q1040	Q1030	90.39	7.77	7.39	0.4	1800
Pipe 357	Q1030	Q1020J	131.00	7.74	6.50	1.0	1800
Pipe 359	Q1020J	Q1010	31.49	6.50	6.26	0.8	1800
Pipe 360	Q1010	Q1000	28.42	6.26	6.15	0.4	1800
Pipe 628	Q116010	Q1100120	13.01	30.87	30.68	1.5	375
Pipe 633	Q115040	Q115030J	9.14	33.01	32.86	1.6	375
Pipe 632	Q115030J	Q115020J	32.06	32.86	32.30	1.8	375
Pipe 631	Q115020J	Q1100100	30.80	32.30	30.16	7.0	375
Pipe 626	Q118010	Q1100150	18.32	31.48	31.26	1.2	375
Pipe 576	Q1100150	Q1100140	30.03	31.26	30.96	1.0	525
Pipe 615	Q119010	Q1100170	15.67	32.60	32.48	0.8	375
Pipe 616	Q1100170	Q1100160	34.93	32.48	31.85	1.8	525
Pipe 625	Q1100160	Q1100150	36.83	31.85	31.26	1.6	525
Pipe 614	Q1100180	Q1100170	64.12	33.59	32.48	1.7	525
Pipe 613	Q155020	Q155010	28.69	33.82	33.20	2.2	375
Pipe 611	Q155010	Q150070	49.16	33.20	32.01	2.4	375
Pipe 166	Q150070	Q150060	69.13	32.01	31.24	1.1	525
Pipe 167	Q150060	Q150050	26.33	30.95	30.54	1.6	525
Pipe 168	Q150050	Q150040	45.41	30.55	29.85	1.5	525
Pipe 197	Q150040	Q150030	60.83	29.75	28.07	2.8	600
Pipe877	Q150030	Q150020	16.65	28.24	27.96	1.7	750
Pipe879	Q150020	Q150015	15.39	27.96	27.70	1.7	750
Pipe 235	Q150015	Q150010	29.39	27.70	27.21	1.7	750
Pipe 550	Q150010	Q10610J	16.54	27.07	26.86	1.3	900
Pipe 296	Q10610J	Q10600J	71.12	26.41	25.55	1.2	1350
Pipe 294	Q10600J	Q10580	19.99	25.55	25.19	1.8	1350
Pipe 308	Q10580	Q10570J	70.66	25.19	24.65	0.8	1500
Pipe 307	Q10570J	Q10560J	36.75	24.65	24.12	1.4	1350
Pipe 305	Q10560J	Q10550J	36.47	24.12	23.89	0.6	1350
Pipe 738	Q10550J	Q10540J	4.79	23.89	23.84	1.0	375
Pipe 306	Q10540J	Q10530	113.04	23.84	22.63	1.1	1350
Pipe 531	Q10530	Q10520	3.48	22.58	22.49	2.6	1350
Pipe 532	Q10520	Q10510J	65.23	21.94	21.38	0.9	1800
Pipe 605	Q10510J	Q10500J	30.58	21.38	21.20	0.6	1800
Pipe 680	Q10500J	Q10490J	18.98	21.20	21.10	0.5	1800
Pipe 681	Q10490J	Q10480J	14.33	21.10	21.03	0.5	1800
Pipe 604	Q10480J	Q10470J	13.31	21.03	20.93	0.8	1800
Pipe 606	Q10470J	Q10460J	12.36	20.97	20.92	0.4	1800
Pipe 676	Q10460J	Q10450J	14.12	20.60	20.53	0.5	1800
Pipe 612	Q156010	Q155010	8.69	33.56	33.42	1.6	375
Pipe 610	Q157010	Q150070	41.83	33.50	32.90	1.4	375
Pipe 648	Q120010	Q10460J	4.65	22.40	22.35	1.1	375
Pipe 651	Q112010	Q110040	12.88	25.68	25.45	1.8	375
Pipe 650	Q107020	Q107010	11.84	24.41	24.25	1.4	375
Pipe 649	Q107010	Q106030	11.98	23.98	23.70	2.3	600
Pipe 598	Q106030	Q106020	62.29	23.09	22.20	1.4	825
Pipe 597	Q106020	Q106010	65.60	22.20	21.17	1.6	825
Pipe 701	Q106010	Q10440J	2.12	21.17	21.15	0.9	825
Pipe 647	Q111010	Q110020	12.39	23.15	23.00	1.2	375
Pipe 646	Q102010	Q101020	12.22	21.54	21.22	2.6	375
Pipe 601	Q101020	Q101010	21.33	21.22	21.10	0.6	1050
Pipe 452	Q109010	Q1060100	4.64	28.93	28.66	5.8	450
Pipe 218	Q1060100	Q106090	33.93	28.66	28.46	0.6	675
Pipe 587	Q106090	Q106080	6.68	28.46	28.43	0.5	675
Pipe 639	Q106080	Q106070	24.75	28.43	28.33	0.4	675
Pipe 586	Q106070	Q106060	12.98	28.27	27.77	3.9	675
Pipe 595	Q106060	Q106050	61.10	27.60	25.47	3.5	750
Pipe 596	Q106050	Q106040	54.63	25.47	24.06	2.6	750
Pipe 599	Q106040	Q106030	28.65	24.06	23.38	2.4	825
Pipe 638	Q108010	Q106060	11.60	28.25	28.15	0.9	375
Pipe 635	Q113010	Q110080	12.87	29.64	29.45	1.5	375
Pipe 636	Q114010	Q110080	17.96	30.21	29.60	3.4	375
Pipe 565	Q98030	Q98020	21.71	20.97	20.71	1.2	375
Pipe 572	Q98020	Q96030J	15.45	20.71	20.50	1.4	450
Pipe 678	Q96030J	Q96020	9.63	20.20	19.99	2.2	675
Pipe 221	Q96020	Q96010	49.65	19.99	19.80	0.4	675
Pipe 517	Q96010	Q10390J	4.73	19.80	19.75	1.1	675
Pipe 570	Q99020	Q99010	16.39	20.53	20.45	0.5	375
Pipe 569	Q99010	Q96030J	25.88	20.45	20.00	1.7	375
Pipe 566	Q99070	Q99060	10.35	21.25	21.20	0.5	375
Pipe 567	Q99060	Q99050	9.36	21.20	21.08	1.3	375
Pipe 568	Q99050	Q99040	9.51	21.08	21.01	0.7	375
Pipe 679	Q99040	Q99010	29.53	21.01	20.50	1.7	375
Pipe 662	Q83070	Q83060	14.06	24.80	24.65	1.1	375
Pipe 661	Q83060	Q83050	15.17	24.65	24.33	2.1	375
Pipe 660	Q83050	Q83040	15.50	24.33	24.15	1.2	375

Pipe Name	From Pit	To Pit	Length (m)	U/S IL	DIS IL	Slope (\%)	Nom. Diameter (mm)
Pipe 659	Q83040	Q83030	13.66	24.15	24.11	0.3	375
Pipe 658	Q83030	Q83020J	20.71	24.11	23.88	1.1	375
Pipe 685	Q83020J	Q83010	14.34	23.23	23.15	0.6	375
Pipe 656	Q83010	Q82030	92.91	23.15	22.40	0.8	375
Pipe 600	Q82030	Q82020	25.48	21.28	21.04	0.9	900
Pipe 278	Q82020	Q82010	86.22	21.04	19.45	1.8	900
Pipe 277	Q82010	Q10330	94.87	19.45	17.30	2.3	900
Pipe 657	Q84010	Q83020J	9.80	23.48	23.23	2.6	375
Pipe 571	Q96090	Q96080	10.08	22.23	22.18	0.5	375
Pipe 655	Q96080	Q96070	9.70	22.18	22.02	1.7	375
Pipe 684	Q96070	Q96060	9.32	22.22	22.03	2.0	450
Pipe 654	Q96060	Q96050	27.65	21.44	21.18	0.9	525
Pipe 580	Q96050	Q96040	69.62	21.18	20.50	1.0	525
Pipe 579	Q96040	Q96030J	30.02	20.50	20.00	1.7	525
Pipe 653	Q97030	Q97020	23.26	22.51	22.19	1.4	375
Pipe 652	Q97020	Q97010	95.36	22.19	20.86	1.4	375
Pipe 645	Q97010	Q96020	20.99	20.86	20.60	1.2	375
Pipe 553	Q71020	Q71010	12.48	25.91	25.67	1.9	375
Pipe 575	Q71010	Q640105J	10.05	25.67	25.51	1.6	525
Pipe 724	Q640105J	Q640100	22.57	25.51	25.06	2.0	375
Pipe 582	Q640100	Q64090J	15.29	25.06	24.03	6.7	600
Pipe 581	Q64090J	Q64080	90.64	23.96	21.36	2.9	675
Pipe 729	Q64080	Q64070J	3.71	21.36	21.25	3.0	675
Pipe 252	Q64070J	Q64060J	10.00	21.10	20.90	2.0	825
Pipe 260	Q64060J	Q64050	99.32	20.90	18.41	2.5	825
Pipe 689	Q64050	Q64044J	7.35	18.41	18.27	1.9	825
Pipe 688	Q64044J	Q64042J	9.09	18.21	18.05	1.8	825
Pipe 259	Q64042J	Q64040	99.70	18.05	16.45	1.6	1050
Pipe 730	Q64040	Q64030J	6.84	16.45	16.33	1.8	1050
Pipe 287	Q64030J	Q64020J	9.50	16.33	16.27	0.6	1050
Pipe 286	Q64020J	Q64010	97.98	16.27	15.62	0.7	1050
Pipe 285	Q64010	Q10260J	20.15	15.62	14.82	4.0	1050
Pipe 554	Q74010	Q72050	18.21	26.46	26.27	1.0	375
Pipe 622	Q72050	Q72040	13.56	26.27	26.07	1.5	375
Pipe 620	Q72040	Q72030	12.23	26.07	25.76	2.5	375
Pipe 619	Q72030	Q72020	15.87	25.76	25.62	0.9	450
Pipe 618	Q72020	Q72010	20.45	25.62	25.43	0.9	450
Pipe 617	Q72010	Q640110	17.05	25.43	25.15	1.6	450
Pipe 725	Q640110	Q640100	17.73	25.15	25.06	0.5	450
Pipe 621	Q73010	Q72040	2.17	26.17	26.14	1.4	375
Pipe 557	Q75010	Q72060	20.56	26.65	26.59	0.3	375
Pipe 555	Q72060	Q72050	26.09	26.59	26.27	1.2	375
Pipe 663	Q240140	Q46010	25.37	29.63	29.35	1.1	375
Pipe 664	Q46010	Q46005J	26.01	29.85	29.30	2.1	450
Pipe 667	Q240170	Q240160	29.78	31.33	30.43	3.0	375
Pipe 624	Q240160	Q240150	16.81	30.43	29.78	3.9	375
Pipe 666	Q240150	Q23015J	7.26	29.68	29.53	2.1	375
Pipe 668	Q22005	Q46001	11.09	29.53	29.03	4.5	375
Pipe 564	Q47010	Q46020	28.47	31.13	30.80	1.2	375
Pipe 573	Q46020	Q46010	66.00	31.18	29.93	1.9	450
Pipe 562	Q46040	Q46030	27.51	32.33	32.00	1.2	375
Pipe 563	Q46030	Q46020	82.98	32.00	31.18	1.0	375
Pipe 561	Q76010	Q720100	12.70	29.92	29.05	6.9	375
Pipe 559	Q720100	Q72090	19.12	28.49	27.60	4.7	375
Pipe 686	Q72090	Q72080	23.82	27.60	26.83	3.2	375
Pipe 556	Q72080	Q72060	27.62	26.83	26.59	0.9	375
Pipe 560	Q720110	Q720100	16.23	29.91	29.10	5.0	375
Pipe 386	Q180510	Q1800110.	8.97	10.42	10.30	1.3	450
Pipe 297	Q1800110J	Q1800100	78.99	9.38	8.75	0.8	1350
Pipe 695	Q1800100	Q180090J	17.95	8.65	8.55	0.6	450
Pipe 309	Q180090J	Q180080J	8.38	8.55	8.46	1.1	1500
Pipe 310	Q180080J	Q180060J	78.92	8.46	7.99	0.6	1500
Pipe 390	Q180060J	Q180050J	13.76	7.66	7.49	1.2	1500
Pipe 350	Q180050J	Q180040J	29.74	7.49	7.25	0.8	1800
Pipe 345	Q180040J	Q180030J	116.28	7.25	6.32	0.8	1800
Pipe 346	Q180030J	Q180020J	22.04	6.32	6.14	0.8	1800
Pipe 347	Q180020J	Q180010J	10.49	6.14	6.05	0.9	1800
Pipe 348	Q180010J	Q180000	22.51	6.05	5.84	0.9	1800
Pipe 539	Q0510	Q1090	36.62	12.00	11.77	0.6	300
Pipe 533	T3570150	T3570140	18.06	34.36	33.88	2.7	375
Pipe 179	T3570140	T3570130	68.94	33.73	32.88	1.2	525
Pipe 451	T3570130	T3570120	7.04	33.08	33.03	0.7	375
Pipe 734	Q79110	Q79010	10.76	31.00	30.66	3.2	375
Pipe 71	Q79010	Q640160	49.79	30.89	28.03	5.7	375
Pipe 171	Q640160	Q640150	6.59	28.03	27.91	1.8	525
Pipe 170	Q640150	Q640140J	84.46	27.91	26.70	1.4	525
Pipe 623	Q640140J	Q640130	11.26	26.70	26.01	6.1	525
Pipe 583	Q640130	Q640120	42.50	26.01	25.53	1.1	600
Pipe 558	Q640120	Q77010	17.71	25.53	25.35	1.0	600

Pipe Name	From Pit	To Pit	Length (m)	U/S IL	DIS IL	Slope (\%)	Nom. Diameter (mm)
Pipe 723	Q77010	Q640105J	8.23	25.99	25.88	1.3	600
Pipe 731	H14010	H11030J	9.51	46.99	46.95	0.4	100
Pipe 7	H11030J	H11020	48.79	46.95	45.07	3.9	375
Pipe 4	H11020	H11010	109.22	45.08	40.82	3.9	375
Pipe 6	H11010	Q1500140	89.45	40.82	37.65	3.5	375
Pipe 9	Q1500140	Q1500130	81.64	37.65	36.05	2.0	375
Pipe 10	Q1500130	Q1500120	79.42	36.05	35.00	1.3	375
Pipe 551	Q1500120	Q1500115	76.81	35.00	34.38	0.8	375
Pipe 607	Q1500115	Q1500110	40.39	34.38	34.05	0.8	450
Pipe 733	Q1500110	Q1500100	56.55	34.05	33.55	0.9	450
Pipe 608	Q1500100	Q150090	18.34	33.55	33.40	0.8	450
Pipe 574	Q150090	Q150080	43.34	33.40	32.55	2.0	525
Pipe 609	Q150080	Q150070	27.61	32.55	32.01	2.0	525
Pipe 691	Q68110	Q64042J	6.30	18.67	18.57	1.6	450
Pipe 690	Q68210	Q64044J	6.48	18.88	18.78	1.5	450
Pipe 732	H11040	H11030J	7.41	47.00	46.95	0.7	375
Pipe 1	Q85070	Q85066J	29.81	38.74	37.70	3.5	300
Pipe 521	Q85066J	Q85063J	10.65	37.70	37.13	5.4	300
Pipe 522	Q85063J	Q85060	47.77	37.13	34.53	5.4	300
Pipe 38	Q85060	Q85050	6.91	34.53	34.49	0.6	375
Pipe 39	Q85050	Q85040J	11.83	34.49	34.42	0.6	375
Pipe 40	Q85040J	Q85036J	159.01	34.42	28.15	3.9	375
Pipe 735	Q85036J	Q85034J	20.05	28.15	27.67	2.4	375
Pipe 736	Q85034J	Q85032J	17.71	27.67	27.27	2.3	375
Pipe 737	Q85032J	Q85030	16.70	27.27	26.89	2.3	375
Pipe 151	Q85030	Q85020	11.62	26.89	26.62	2.3	450
Pipe 481	Q85020	Q85010	15.42	26.62	26.56	0.4	450
Pipe 188	Q85010	Q82050	46.94	26.56	24.93	3.5	525
Pipe 226	Q82050	Q82040	25.97	24.93	24.15	3.0	600
Pipe 592	Q82040	Q82030	107.89	24.15	21.28	2.7	600
Pipe 121	Q210520	Q210510J	67.83	15.52	14.18	2.0	375
Pipe 747	Q210510J	Q207060	32.28	14.18	13.52	2.0	375
Pipe 247	Q207060	Q207050	67.86	13.15	12.58	0.8	750
Pipe 700	Q207050	Q207040J	8.99	12.59	12.52	0.8	375
Pipe 248	Q207040J	Q207030	78.09	12.52	11.94	0.7	750
Pipe 240	Q207030	Q207020J	9.74	11.94	11.89	0.5	750
Pipe 238	Q207020J	Q207010	84.37	11.89	11.55	0.4	750
Pipe 538	Q207010	Q1800150	9.48	11.47	11.34	1.4	825
Pipe 303	Q1800150	Q1800140.	83.97	10.81	10.14	0.8	1350
Pipe 698	Q1800140J	Q1800130.	6.90	10.14	10.08	0.9	375
Pipe 304	Q1800130J	Q1800120	80.46	10.08	9.45	0.8	1350
Pipe 543	Q1800120	Q1800110.	8.92	9.45	9.38	0.8	1350
Pipe 123	Q230520	Q230510	6.89	17.32	17.23	1.3	375
Pipe 122	Q230510	Q230010	88.18	17.23	16.12	1.3	375
Pipe 193	Q230010	Q1800360	141.39	15.97	14.51	1.0	525
Pipe 284	Q1800360	Q1800340.	12.13	14.51	14.24	2.2	1050
Pipe 708	Q1800340J	Q1800330.	5.93	14.24	14.10	2.4	375
Pipe 288	Q1800330J	Q1800320	85.82	14.10	13.20	1.1	1050
Pipe 728	Q1800320	Q1800310.	6.42	13.11	13.06	0.8	1200
Pipe 293	Q1800310J	Q1800300	11.72	13.06	12.98	0.7	1200
Pipe 292	Q1800300	Q1800290	65.27	12.98	12.52	0.7	1200
Pipe 290	Q1800290	Q1800280.	4.85	12.52	12.49	0.6	1200
Pipe 748	Q1800280J	Q1800275.	9.15	12.49	12.44	0.6	375
Pipe 749	Q1800275J	Q1800270	3.76	12.44	12.42	0.5	375
Pipe 318	Q1800270	Q1800260	57.00	12.42	12.10	0.6	1350
Pipe 699	Q1800260	Q1800250.	8.58	12.10	12.05	0.6	1350
Pipe 298	Q1800250J	Q1800230	8.82	12.05	11.99	0.7	1350
Pipe 299	Q1800230	Q1800220	99.65	11.99	11.55	0.4	1350
Pipe 535	Q1800220	Q1800210.	5.04	11.55	11.53	0.4	1350
Pipe 403	Q1800210J	Q1800200	14.11	11.53	11.47	0.4	1350
Pipe 300	Q1800200	Q1800180	96.35	11.47	11.13	0.4	1350
Pipe 536	Q1800180	Q1800170	19.81	11.13	11.04	0.5	1350
Pipe 302	Q1800170	Q1800160	45.32	11.04	10.86	0.4	1350
Pipe 422	Q1800160	Q1800150	8.36	10.86	10.81	0.6	1350
Pipe 511	Q144040J	Q144030	11.66	32.63	32.06	4.9	375
Pipe 375	Q144030	Q144020	42.78	32.06	29.96	4.9	375
Pipe 374	Q144020	Q144010	18.66	29.89	29.36	2.8	375
Pipe 128	Q144010	Q141050J	75.29	29.36	27.38	2.6	450
Pipe 159	Q141050J	Q141040	14.18	26.83	26.67	1.1	525
Pipe 160	Q141040	Q141030	62.85	26.67	25.92	1.2	525
Pipe 199	Q141030	Q141020	13.35	25.77	25.63	1.1	675
Pipe 236	Q141020	Q141010J	32.57	25.63	25.39	0.7	750
Pipe 366	Q141010J	Q10570J	19.53	25.39	25.25	0.7	750
Pipe 2	H13020	H13010	13.97	45.32	45.20	0.9	375
Pipe 3	H13010	H11020	25.24	45.20	45.07	0.5	375
Pipe 5	H12010	H11010	28.87	41.80	40.82	3.4	375
Pipe 512	Q1410110	Q1410100	16.16	32.89	32.60	1.8	375
Pipe 373	Q1410100	Q141090	54.76	32.60	29.40	5.8	375
Pipe 371	Q141090	Q141080	47.08	29.40	27.79	3.4	375

Pipe Name	From Pit	To Pit	Length (m)	U/S IL	DIS IL	Slope (\%)	Nom. Diameter (mm)
Pipe 370	Q141080	Q141060J	24.46	27.79	26.95	3.4	375
Pipe 369	Q141060J	Q141050J	4.68	26.95	26.83	2.6	375
Pipe 423	Q208010	Q207020J	7.96	12.18	12.05	1.6	375
Pipe 461	Q127010	Q123020J	7.19	21.70	21.60	1.4	375
Pipe 530	Q123020J	Q123010	6.99	24.10	24.07	0.4	1200
Pipe 291	Q123010	Q10520	38.14	23.93	22.63	3.4	1200
Pipe 496	Q65010	Q64020J	5.84	16.56	16.47	1.5	450
Pipe 497	Q66010	Q64030J	6.09	16.78	16.70	1.3	450
Pipe 709	Q1800470	Q1800460.	8.90	25.13	25.00	1.5	525
Pipe 195	Q1800460J	Q1800450	26.09	25.00	24.61	1.5	525
Pipe 230	Q1800450	Q1800440	67.18	24.54	23.90	1.0	600
Pipe 229	Q1800440	Q1800430	71.59	23.81	22.38	2.0	600
Pipe 228	Q1800430	Q1800425.	20.33	22.38	21.88	2.5	675
Pipe 710	Q1800425J	Q1800420.	85.65	21.88	20.04	2.2	375
Pipe 245	Q1800420J	Q1800410	13.29	19.97	19.90	0.5	750
Pipe 244	Q1800410	Q1800400	123.34	19.90	19.19	0.6	750
Pipe 242	Q1800400	Q1800390	13.25	19.19	19.03	1.2	750
Pipe 243	Q1800390	Q1800380	169.45	19.03	16.62	1.4	750
Pipe 279	Q1800380	Q1800370	24.08	16.62	16.29	1.4	900
Pipe 280	Q1800370	Q1800360	171.21	16.29	14.51	1.0	900
Pipe 507	Q240010	Q1800460.	7.37	25.29	25.20	1.2	375
Pipe 125	Q238040	Q238030	11.81	29.05	28.88	1.4	375
Pipe 124	Q238030	Q238020	166.64	28.88	24.46	2.7	375
Pipe 505	Q238020	Q238010	35.38	24.46	23.94	1.5	450
Pipe 231	Q238010	Q1800440	13.19	23.94	23.81	1.0	600
Pipe 506	Q239010	Q1800440	11.12	24.06	23.90	1.4	375
Pipe 153	Q234010	Q1800400	13.45	20.22	20.00	1.6	450
Pipe 116	Q233010	Q1800390	15.34	20.28	20.10	1.2	375
Pipe 118	Q235010	Q1800410	12.32	20.50	20.30	1.6	375
Pipe 504	Q236050	Q236030	16.69	22.45	22.38	0.4	375
Pipe 503	Q236030	Q236020J	4.89	22.38	22.36	0.4	375
Pipe 119	Q236020J	Q236010	14.07	22.36	21.43	6.7	375
Pipe 246	Q236010	Q1800420.	97.27	21.05	19.97	1.1	750
Pipe 120	Q237010	Q236030	7.45	22.28	22.18	1.3	375
Pipe 711	Q231020	Q231010J	1.01	17.32	17.30	2.0	375
Pipe 489	Q231010J	Q1800370	11.23	17.30	17.20	0.9	450
Pipe 117	Q232010	Q231010J	40.23	17.39	17.20	0.5	375
Pipe 508	Q210010	Q207070	7.64	14.42	14.30	1.6	375
Pipe 233	Q207070	Q207060	22.81	13.39	13.22	0.8	675
Pipe 510	Q209010	Q207040J	10.55	13.37	13.26	1.0	375
Pipe 500	Q225010	Q1800310.	9.17	13.90	13.76	1.5	450
Pipe 501	Q224010	Q1800300	9.77	13.79	13.72	0.7	600
Pipe 499	Q226010	Q1800320	8.61	14.09	14.00	1.1	375
Pipe 491	Q228010	Q1800330.	9.30	14.83	14.74	1.0	375
Pipe 502	Q227010	Q1800330.	8.12	14.91	14.80	1.4	450
Pipe 490	Q229010	Q1800340.	8.63	15.59	15.50	1.0	375
Pipe 492	Q230020	Q230010	17.53	16.20	15.97	1.3	375
Pipe 194	Q60010	Q59010J	5.75	16.53	16.43	1.7	450
Pipe 705	Q59010J	Q10235J	9.38	15.98	15.80	1.9	525
Pipe 706	Q61010	Q59020J	4.99	16.92	16.85	1.4	375
Pipe 493	Q59020J	Q59010J	12.54	16.46	16.30	1.3	450
Pipe 495	Q62010	Q10250	11.47	16.18	16.06	1.1	375
Pipe 487	Q80010	Q10260J	13.70	16.29	16.15	1.0	450
Pipe 498	Q67010	Q64040	11.34	16.82	16.70	1.1	450
Pipe 227	Q68010	Q64050	11.89	19.01	18.80	1.8	450
Pipe 485	Q81020	Q81010	11.72	17.81	17.74	0.6	525
Pipe 192	Q81010	Q10300	81.32	17.74	17.27	0.6	525
Pipe 152	Q86030	Q86020	22.84	28.15	27.15	4.4	450
Pipe 190	Q86020	Q86010J	27.35	27.13	26.52	2.2	525
Pipe 189	Q86010J	Q82050	63.03	26.62	24.93	2.7	525
Pipe 115	Q85510	Q85030	7.39	27.00	26.89	1.5	300
Pipe 477	Q820150	Q820140	9.98	28.31	28.21	1.0	375
Pipe 478	Q820140	Q820130J	10.07	28.21	28.08	1.3	375
Pipe 479	Q820130J	Q820120	58.72	28.08	27.30	1.3	375
Pipe 480	Q820120	Q820110	11.11	27.30	27.16	1.3	375
Pipe 524	Q820110	Q820100	9.11	27.01	26.88	1.4	525
Pipe 185	Q820100	Q82090J	7.17	26.88	26.80	1.1	525
Pipe 186	Q82090J	Q82080	54.78	26.88	26.46	0.8	525
Pipe 191	Q82080	Q82070	7.80	26.46	26.28	2.3	525
Pipe 523	Q82070	Q82060	6.42	26.28	26.20	1.3	525
Pipe 187	Q82060	Q82050	36.26	26.20	24.93	3.5	525
Pipe 476	Q93010	Q870110	14.68	27.37	27.00	2.5	375
Pipe 184	Q870110	Q870100	77.72	26.80	25.14	2.1	525
Pipe 715	Q870100	Q87090J	5.99	25.14	25.02	2.0	525
Pipe 714	Q87090J	Q87080J	12.03	25.02	24.78	2.0	375
Pipe 183	Q87080J	Q87070	61.59	24.78	23.55	2.0	525
Pipe 473	Q87070	Q87060	19.83	23.55	23.16	2.0	525
Pipe 225	Q87060	Q87050	87.88	23.16	21.45	2.0	600
Pipe 515	Q87050	Q87040J	6.80	21.45	21.26	2.8	675

Pipe Name	From Pit	To Pit	Length (m)	U/S IL	D/S IL	Slope (\%)	Nom. Diameter (mm)
Pipe 223	Q87040J	Q87030	16.91	21.26	20.77	2.9	675
Pipe 224	Q87030	Q87020	79.77	20.77	19.91	1.1	675
Pipe 472	Q87020	Q87010	8.41	19.91	19.74	2.0	675
Pipe 222	Q87010	Q10350J	79.10	19.74	18.19	2.0	675
Pipe 114	Q94010	Q870140	13.12	30.08	29.90	1.4	375
Pipe 148	Q870140	Q870130	8.51	29.70	29.45	2.9	450
Pipe 149	Q870130	Q870120	19.91	29.45	28.95	2.5	450
Pipe 150	Q870120	Q870110	77.59	28.95	26.80	2.8	450
Pipe 108	Q870200	Q870190	11.84	32.89	32.70	1.6	375
Pipe 109	Q870190	Q870180	8.35	32.70	32.57	1.6	375
Pipe 110	Q870180	Q870170	9.58	32.57	32.41	1.7	375
Pipe 111	Q870170	Q870160	13.51	32.41	32.19	1.6	375
Pipe 112	Q870160	Q870150	45.10	32.19	31.71	1.1	375
Pipe 113	Q870150	Q870140	60.74	31.71	29.90	3.0	375
Pipe 474	Q92010	Q870100	12.21	25.40	25.14	2.1	375
Pipe 107	Q91010	Q87090J	5.50	25.29	25.13	2.9	375
Pipe 106	Q90010	Q87080J	5.50	25.06	24.79	4.9	375
Pipe 104	Q89010	Q87050	15.12	21.82	21.45	2.5	375
Pipe 105	Q88010	Q87040J	23.54	22.12	21.40	3.1	300
Pipe 470	Q95020	Q10390J	21.32	19.95	19.60	1.6	375
Pipe 642	Q100030	Q100020	33.60	22.80	20.80	6.0	375
Pipe 643	Q100020	Q100010	7.38	20.80	20.69	1.5	375
Pipe 644	Q100010	Q96040	9.19	20.69	20.50	2.1	375
Pipe 468	Q103070	Q103060J	7.62	28.02	27.83	2.5	300
Pipe 525	Q103060J	Q103050J	14.28	27.83	27.54	2.0	300
Pipe 526	Q103050J	Q103040J	30.54	27.54	26.35	3.9	300
Pipe 467	Q103040J	Q103030J	52.47	26.35	25.70	1.2	300
Pipe 516	Q103030J	Q103020	1.39	25.42	25.37	3.6	300
Pipe 466	Q103020	Q103010	6.87	25.32	25.16	2.3	375
Pipe 465	Q103010	Q101050	13.22	25.11	24.60	3.9	375
Pipe 241	Q101050	Q101040	132.64	24.43	21.81	2.0	675
Pipe 603	Q101040	Q101030	14.10	21.51	21.36	1.1	1050
Pipe 602	Q101030	Q101020	46.33	21.36	21.22	0.3	1050
Pipe 464	Q125020	Q125010	66.53	25.45	24.57	1.3	300
Pipe 460	Q125010	Q123010	14.20	24.57	24.35	1.6	375
Pipe 641	Q122020	Q122010	9.11	22.98	22.93	0.6	300
Pipe 640	Q122010	Q10510J	3.97	22.91	22.83	2.0	375
Pipe 463	Q140010	Q139010	9.43	25.63	25.44	2.0	300
Pipe 741	Q139010	Q139005J	5.17	25.60	25.53	1.4	450
Pipe 462	Q139005J	Q10540J	40.98	25.53	24.75	1.9	450
Pipe 529	Q126010	Q123020J	5.88	24.47	24.39	1.4	375
Pipe 454	Q139060	Q139050	11.84	27.80	27.70	0.8	300
Pipe 455	Q139050	Q139040	19.47	27.68	27.17	2.6	300
Pipe 456	Q139040	Q139030	11.36	26.92	26.53	3.4	300
Pipe 458	Q139030	Q139010	59.34	26.11	25.60	0.9	375
Pipe 453	Q1060130	Q1060120	47.75	29.91	29.63	0.6	525
Pipe 181	Q1060120	Q1060110	45.58	29.63	29.02	1.3	525
Pipe 219	Q1060110	Q1060100	40.43	29.02	28.66	0.9	600
Pipe 450	Q205010	Q1800140.	3.56	11.45	11.30	4.2	450
Pipe 449	Q204010	Q1800130.	10.86	11.26	10.95	2.9	450
Pipe 537	Q215020	Q215010J	8.95	12.01	11.90	1.2	375
Pipe 91	Q215010J	Q1800170	7.08	11.95	11.90	0.7	375
Pipe 421	Q216010	Q215010J	4.84	12.33	12.28	1.0	375
Pipe 430	Q16040	Q16030	5.62	12.59	12.44	2.7	375
Pipe 176	Q16030	Q16010	64.41	12.44	12.20	0.4	525
Pipe 429	Q16010	Q14035J	5.35	12.20	12.13	1.3	525
Pipe 427	Q14035J	Q14030J	9.14	12.13	12.03	1.1	525
Pipe 213	Q14030J	Q14020	43.99	11.94	11.55	0.9	675
Pipe 214	Q14020	Q14010	59.37	11.55	11.19	0.6	675
Pipe 431	Q14010	Q1050J	11.46	11.19	11.08	1.0	675
Pipe 239	Q19020	Q19010	23.06	11.51	10.99	2.3	750
Pipe 266	Q19010	Q1070	7.57	10.99	10.90	1.2	900
Pipe 175	Q18910	Q1070	15.61	11.71	11.41	1.9	525
Pipe778	Q189030	Q189020J	5.65	11.25	11.16	1.6	375
Pipe 177	Q189020J	Q189010J	72.26	11.05	10.52	0.7	525
Pipe 178	Q189010J	Q188030	15.22	10.52	10.41	0.7	525
Pipe 95	Q188030	Q188020	69.90	10.41	9.54	1.2	375
Pipe 696	Q188020	Q188010	17.88	9.54	9.34	1.1	375
Pipe 169	Q188010	Q180080J	17.63	9.34	9.10	1.4	525
Pipe 433	Q200010	Q189020J	5.59	11.21	11.16	0.9	375
Pipe 147	Q190020	Q189020J	11.67	11.24	11.10	1.2	450
Pipe 432	Q188050	Q188040J	32.10	11.33	11.03	0.9	375
Pipe 94	Q188040J	Q188030	56.11	11.03	10.41	1.1	375
Pipe 215	Q246020J	Q246010	32.26	10.95	10.15	2.5	600
Pipe 547	Q246010	Q241080J	6.18	10.15	10.12	0.5	600
Pipe 327	Q241080J	Q241070	13.96	8.58	8.50	0.6	1800
Pipe 326	Q241070	Q241060	188.49	8.50	7.63	0.5	1800
Pipe 548	Q241060	Q241050	4.30	7.63	7.59	0.9	1800
Pipe 313	Q241050	Q241040J	12.05	7.59	7.49	0.8	1800

Pipe Name	From Pit	To Pit	Length (m)	U/S IL	DIS IL	Slope (\%)	Nom. Diameter (mm)
Pipe 349	Q241040J	Q241030J	40.02	7.49	7.13	0.9	1800
Pipe 363	Q241030J	Q241020	38.94	7.15	6.82	0.9	1800
Pipe 719	Q241020	Q241010J	6.57	6.82	6.76	0.9	1800
Pipe 344	Q241010J	Q241000	114.63	6.76	5.84	0.8	1800
Pipe 434	Q244050	Q244040	24.75	10.68	10.23	1.8	375
Pipe 435	Q244040	Q244030	8.93	10.23	10.11	1.3	375
Pipe 436	Q244030	Q244020J	32.13	10.11	9.90	0.7	450
Pipe 96	Q244020J	Q244010	76.87	9.90	9.42	0.6	375
Pipe 136	Q244010	Q241030J	114.91	9.42	8.56	0.8	450
Pipe 815	Q2070	Q2060J	2.15	9.79	9.77	1.2	1800
Pipe 694	Q2060J	Q2410110	6.47	10.45	10.37	1.2	525
Pipe 352	Q2060J	Q2055	25.31	9.77	9.50	1.1	1800
Pipe 437	Q2080	Q2060J	2.34	10.52	10.45	3.0	525
Pipe 438	Q13010	Q2055	5.68	10.45	10.35	1.8	525
Pipe 353	Q2055	Q2050	82.56	8.60	7.88	0.9	1800
Pipe 355	Q2050	Q2040	74.47	7.88	7.36	0.7	1800
Pipe 356	Q2040	Q2030J	83.33	7.55	6.96	0.7	1800
Pipe 358	Q2030J	Q2020	47.84	6.96	6.60	0.8	1800
Pipe 361	Q2020	Q2010J	39.89	6.60	6.35	0.6	1800
Pipe 362	Q2010J	Q2000	28.95	6.35	6.15	0.7	1800
Pipe 428	Q15010	Q14030J	6.99	12.12	12.05	1.0	300
Pipe 93	Q17020	Q17010	6.83	12.47	12.18	4.3	300
Pipe 92	Q17010	Q14040	12.42	12.18	11.90	2.3	300
Pipe 545	Q14040	Q14035J	4.38	12.15	12.13	0.5	300
Pipe 145	Q14070	Q14060	21.19	14.17	13.60	2.7	450
Pipe 146	Q14060	Q14050	95.90	13.60	12.20	1.5	450
Pipe 544	Q14050	Q14040	1.21	12.20	12.15	4.1	450
Pipe 424	Q30160	Q30150	11.93	13.61	12.98	5.3	450
Pipe 425	Q30150	Q30140	61.56	12.98	12.67	0.5	450
Pipe 216	Q30140	Q30130	13.81	12.67	12.46	1.5	600
Pipe 217	Q30130	Q30120	68.94	12.46	12.01	0.7	600
Pipe 267	Q30120	Q30111J	4.44	12.01	11.95	1.4	900
Pipe 716	Q30111J	Q30110	9.08	11.70	11.63	0.8	900
Pipe 268	Q30110	Q30100	68.32	11.63	11.17	0.7	900
Pipe 751	Q30100	Q3090	5.98	11.17	11.10	1.2	900
Pipe 443	Q3090	Q3080	7.02	11.10	11.06	0.6	900
Pipe 269	Q3080	Q3070	68.73	11.06	10.85	0.3	900
Pipe 750	Q3070	Q3071	8.72	10.85	10.60	2.9	900
Pipe 270	Q3071	Q3060	6.55	10.60	10.50	1.5	900
Pipe 271	Q3060	Q3050	46.34	10.63	10.39	0.5	900
Pipe 272	Q3050	Q3040	50.25	10.39	9.96	0.9	900
Pipe 273	Q3040	Q3030	19.01	9.96	9.91	0.3	900
Pipe 274	Q3030	Q3020	44.09	9.91	9.73	0.4	900
Pipe 275	Q3020	Q3010	53.85	9.73	8.36	2.5	900
Pipe 276	Q3010	Q2030J	7.16	8.36	8.30	0.8	900
Pipe 426	Q11020	Q11010	7.40	13.87	13.75	1.6	375
Pipe 439	Q11010	Q30130	11.61	13.59	13.45	1.2	375
Pipe 441	Q9030	Q30111J	3.57	13.53	13.45	2.2	375
Pipe 440	Q10010	Q30120	6.42	13.50	13.30	3.1	375
Pipe 442	Q7010	Q30100	6.20	13.27	13.10	2.7	375
Pipe 448	Q12010	Q2040	7.34	11.12	11.03	1.2	375
Pipe 444	Q6010	Q3071	3.31	12.40	12.36	1.2	375
Pipe 447	Q5010	Q4020	8.50	12.40	12.24	1.9	375
Pipe 98	Q4020	Q4010	13.96	12.24	12.10	1.0	375
Pipe 446	Q4010	Q3060	10.30	12.10	12.00	1.0	375
Pipe 97	Q4040	Q4030	8.37	12.45	12.34	1.3	375
Pipe 99	Q4030	Q4020	18.67	12.34	12.24	0.5	375
Pipe 445	Q1110	Q1020J	6.96	10.44	10.23	3.0	375
Pipe 208	Q22010	Q10110J	4.27	12.51	12.45	1.4	600
Pipe 404	Q21010	Q10100J	4.29	12.81	12.76	1.2	450
Pipe 237	Q23010	Q10120J	15.67	12.93	12.73	1.3	750
Pipe 174	Q31020	Q31010	8.16	15.05	14.84	2.6	525
Pipe 209	Q31010	Q24010J	17.42	14.87	14.66	1.2	675
Pipe 301	Q24010J	Q48010	101.36	13.05	12.39	0.7	1350
Pipe 405	Q48010	Q10120J	12.65	12.39	12.23	1.3	450
Pipe 86	Q37010	Q24040J	8.20	17.23	17.15	1.0	600
Pipe 542	Q24040J	Q24030J	10.91	16.92	16.65	2.5	450
Pipe 265	Q24030J	Q24020	104.52	16.48	14.05	2.3	900
Pipe 541	Q24020	Q24010J	15.31	14.05	13.90	1.0	900
Pipe 410	Q36010	Q24040J	1.23	17.44	17.41	2.4	450
Pipe 102	Q35010	Q33030	3.09	18.98	18.92	1.9	375
Pipe 211	Q33030	Q33020J	10.82	17.94	17.72	2.0	675
Pipe 212	Q33020J	Q33010	69.52	17.72	16.62	1.6	675
Pipe 210	Q33010	Q24030J	13.65	16.62	16.48	1.0	675
Pipe 90	Q34010	Q33020J	5.11	18.46	18.35	2.2	450
Pipe 89	Q33060	Q33050	115.89	23.12	19.38	3.2	375
Pipe 745	Q33050	Q33045J	7.50	19.38	19.28	1.3	375
Pipe 746	Q33045J	Q33040	63.24	19.28	18.32	1.5	375
Pipe 180	Q33040	Q33030	7.91	18.34	18.16	2.3	450

Pipe Name	From Pit	To Pit	Length (m)	U/S IL	DIS IL	Slope (\%)	Nom. Diameter (mm)
Pipe 722	Q39010	Q24050J	3.96	19.74	19.60	3.5	375
Pipe 253	Q24050J	Q24040J	116.23	19.61	16.85	2.4	825
Pipe 87	Q38020	Q38010	8.15	20.41	20.09	3.9	375
Pipe 100	Q38010	Q24050J	5.22	20.04	19.85	3.6	300
Pipe 88	Q40020	Q40010	7.59	22.89	22.78	1.5	375
Pipe 101	Q40010	Q24060J	5.18	22.68	22.56	2.3	375
Pipe 254	Q24060J	Q24050J	117.46	22.50	19.76	2.3	825
Pipe 721	Q41010	Q24060J	3.91	22.69	22.59	2.6	750
Pipe 420	Q42010	Q24070J	3.85	25.90	25.85	1.3	375
Pipe 257	Q24070J	Q24060J	77.59	25.16	22.50	3.4	825
Pipe 416	Q43010	Q24090	8.53	26.56	25.50	12.4	375
Pipe 255	Q24090	Q24080J	36.46	25.43	25.28	0.4	825
Pipe 258	Q24080J	Q24070J	31.07	25.28	25.16	0.4	825
Pipe 417	Q44010	Q240100J	4.95	27.87	27.80	1.4	375
Pipe 256	Q240100J	Q24090	42.08	25.61	25.43	0.4	825
Pipe 419	Q45010	Q240105J	6.34	27.85	27.78	1.1	375
Pipe 720	Q240105J	Q240100J	8.78	25.65	25.61	0.5	375
Pipe 415	Q240130	Q240120	9.29	25.99	25.95	0.4	375
Pipe 760	Q240120	Q240110	59.75	25.95	25.68	0.5	375
Pipe 418	Q240110	Q240105J	6.68	25.68	25.65	0.5	375
Pipe 394	Q53050	Q53040	10.48	21.96	21.41	5.3	375
Pipe 395	Q53040	Q53030	112.40	21.41	17.48	3.5	375
Pipe 397	Q53030	Q53020	121.52	17.48	15.43	1.7	375
Pipe 172	Q53020	Q53015	48.57	15.43	14.95	1.0	525
Pipe 693	Q53015	Q53010	38.27	14.95	14.58	1.0	525
Pipe 692	Q53010	Q10180	19.47	14.58	14.22	1.9	525
Pipe 411	Q25090	Q25080	8.99	22.55	21.96	6.6	375
Pipe 413	Q25080	Q25070	90.12	21.96	18.83	3.5	375
Pipe 412	Q25070	Q25060	47.76	18.83	18.22	1.3	375
Pipe 408	Q25060	Q25050	95.03	18.22	16.12	2.2	375
Pipe 144	Q25050	Q25040	80.73	15.83	14.65	1.5	450
Pipe 142	Q25040	Q25030	11.41	14.65	14.49	1.4	450
Pipe 196	Q25030	Q25020J	17.88	14.49	14.24	1.4	525
Pipe 173	Q25020J	Q25010J	47.26	14.24	14.03	0.4	525
Pipe 406	Q25010J	Q24010J	13.97	14.03	13.96	0.5	525
Pipe 414	Q30010	Q25070	8.93	19.86	19.50	4.0	375
Pipe 409	Q29010	Q25060	7.57	18.45	18.22	3.0	375
Pipe 396	Q55010	Q53030	8.97	17.57	17.48	1.0	375
Pipe 77	Q54010	Q53020	9.39	15.65	15.43	2.3	375
Pipe 85	Q28010	Q25050	8.79	16.44	16.12	3.6	375
Pipe 143	Q27010	Q26010J	10.10	14.51	14.40	1.1	450
Pipe 407	Q26010J	Q25020J	24.60	14.35	14.24	0.5	375
Pipe 534	Q26020	Q26010J	8.87	14.39	14.35	0.5	450
Pipe 205	Q52010	Q10180	20.98	14.55	14.22	1.6	675
Pipe 399	Q51010	Q10170	8.64	14.07	13.98	1.0	375
Pipe 400	Q50010	Q10160J	11.89	13.44	13.30	1.2	575
Pipe 401	Q49010	Q10150J	14.54	13.37	13.20	1.2	675
Pipe 81	Q221020	Q221010	8.93	13.26	13.19	0.8	375
Pipe 80	Q221010	Q1800270	6.71	13.19	13.14	0.8	375
Pipe 82	Q223010	Q1800280.	12.22	13.44	13.30	1.2	375
Pipe 79	Q222010	Q1800275.	10.79	12.98	12.87	1.0	375
Pipe 84	Q219010	Q1800230	18.93	12.94	11.99	5.0	375
Pipe 402	Q220010	Q1800250.	4.82	13.08	13.00	1.7	375
Pipe 207	Q217010	Q1800200	22.61	12.65	12.40	1.1	375
Pipe 83	Q218010	Q1800210.	8.29	12.44	12.35	1.1	375
Pipe 206	Q57010	Q10210J	11.67	14.66	14.54	1.0	675
Pipe 141	Q56010	Q10200J	12.12	14.94	14.70	2.0	450
Pipe 78	Q58010	Q10210J	4.69	14.67	14.60	1.5	375
Pipe 140	Q69010	Q64060J	5.62	21.26	21.23	0.5	450
Pipe 76	Q70060	Q70050	11.97	25.08	24.77	2.6	375
Pipe 75	Q70050	Q70040	9.36	24.76	24.25	5.5	375
Pipe 74	Q70040	Q70030	8.50	24.20	24.08	1.4	375
Pipe 73	Q70030	Q70020	8.54	24.16	23.83	3.9	375
Pipe 204	Q70020	Q70010	84.99	24.25	21.43	3.3	600
Pipe 139	Q70010	Q64070J	6.18	21.38	21.35	0.5	450
Pipe 70	Q78010	Q640160	24.02	28.39	28.03	1.5	375
Pipe 72	Q640170	Q640166J	11.63	31.37	30.95	3.6	375
Pipe 742	Q640166J	Q640164J	13.28	30.95	30.46	3.7	375
Pipe 743	Q640164J	Q640162J	10.48	30.46	30.08	3.6	375
Pipe 744	Q640162J	Q640160	51.06	30.08	28.20	3.7	375
Pipe 312	Q79030	Q79020	9.19	33.25	33.12	1.4	375
Pipe 311	Q79020	Q79010	86.06	32.90	30.89	2.3	375
Pipe 67	G1278030	G1278020	7.22	8.41	8.32	1.3	375
Pipe 66	G1278020	G1278010	6.98	8.32	8.23	1.3	375
Pipe 132	G1278010	G1278000	63.05	8.23	8.12	0.2	450
Pipe 65	G158040	G158030	7.22	7.69	7.63	0.8	375
Pipe 759	G158030	G158020	6.48	7.63	7.55	1.2	375
Pipe 64	G158020	G158010	51.18	7.55	6.58	1.9	375
Pipe 63	Q202010	Q201010J	14.71	9.24	9.02	1.5	375

Pipe Name	From Pit	To Pit	Length (m)	U/S IL	D/S IL	Slope (\%)	Nom. Diameter (mm)
Pipe 697	Q201010J	Q180090J	7.38	9.02	8.95	1.0	375
Pipe 62	Q203010	Q201020	9.17	9.25	9.19	0.7	375
Pipe 60	Q201020	Q201010J	34.65	9.19	9.02	0.5	375
Pipe 61	Q201030	Q201020	11.75	9.25	9.19	0.5	375
Pipe 391	Q187010	Q180060J	2.34	7.70	7.66	1.7	375
Pipe 393	Q185010	Q186010	20.92	9.28	8.95	1.6	375
Pipe 392	Q186010	Q180040J	10.27	9.28	9.15	1.3	375
Pipe 389	Q242010	Q241010J	4.91	8.73	8.70	0.6	375
Pipe 549	Q243010	Q241020	1.52	9.07	9.00	4.6	300
Pipe 135	Q183030	Q183020	25.26	8.88	8.65	0.9	450
Pipe 134	Q183020	Q183010	20.18	8.63	8.48	0.7	450
Pipe 133	Q183010	Q180030J	15.18	8.65	8.15	3.3	450
Pipe 387	Q182010	Q180020J	2.80	8.48	8.45	1.1	375
Pipe 388	Q181010	Q180010J	10.83	9.20	9.00	1.9	375
Pipe 69	Q245060	Q245050	8.98	9.96	9.92	0.5	375
Pipe 68	Q245050	Q245040	8.38	9.92	9.88	0.5	375
Pipe 138	Q245040	Q245030	70.74	9.88	9.64	0.3	450
Pipe 718	Q245030	Q245020	4.17	9.64	9.56	1.9	450
Pipe 717	Q245020	Q245010	8.61	9.64	9.60	0.5	450
Pipe 137	Q245010	Q244010	35.74	9.60	9.42	0.5	450
Pipe 154	Q152030	Q152020	37.93	28.24	27.42	2.2	675
Pipe 198	Q152020	Q152010	11.71	27.42	27.29	1.1	675
Pipe 203	Q152010	Q150010	8.93	27.29	26.94	3.9	675
Pipe 33	Q104020	Q104010	9.52	29.57	29.37	2.1	375
Pipe 34	Q104010	Q101070	8.23	29.37	29.28	1.1	375
Pipe 182	Q101070	Q101060	111.84	29.05	25.00	3.6	525
Pipe 220	Q101060	Q101050	22.30	24.97	24.58	1.8	600
Pipe 36	Q105020	Q105010	9.29	32.81	32.63	1.9	375
Pipe 35	Q105010	Q101090	8.30	32.03	31.73	3.6	375
Pipe 162	Q101090	Q101080	55.42	31.73	30.04	3.1	525
Pipe 161	Q101080	Q101070	27.39	30.04	29.05	3.6	525
Pipe 365	Q1010140	Q1010130	3.38	35.16	35.10	1.8	375
Pipe 385	Q1010130	Q1010120	9.05	35.10	35.02	0.9	375
Pipe 384	Q1010120	Q1010110	11.70	34.94	34.86	0.7	375
Pipe 383	Q1010110	Q1010100	60.04	34.86	32.89	3.3	450
Pipe 130	Q1010100	Q101090	20.68	32.89	31.86	5.0	450
Pipe 58	Q128010	Q123030J	1.28	24.94	24.92	1.6	375
Pipe 528	Q123030J	Q123020J	18.67	24.20	24.10	0.5	1200
Pipe 59	Q124030	Q124020	34.63	24.90	24.63	0.8	300
Pipe 103	Q124020	Q124010	45.00	24.63	24.22	0.9	375
Pipe 459	Q124010	Q123010	15.42	24.22	24.00	1.4	450
Pipe 57	Q129010	Q123040J	12.45	26.80	26.70	0.8	375
Pipe 289	Q123040J	Q123030J	92.99	26.20	24.20	2.2	1200
Pipe 32	Q130010	Q123040J	9.52	26.71	26.59	1.3	300
Pipe 382	Q131010	Q123050J	1.64	27.03	27.01	1.2	375
Pipe 264	Q123050J	Q123040J	20.24	26.90	26.50	2.0	900
Pipe 23	Q132020	Q132010	32.77	29.35	29.01	1.0	375
Pipe 381	Q132010	Q123070J	8.09	29.01	28.70	3.8	375
Pipe 263	Q123070J	Q123050J	70.79	28.30	26.90	2.0	900
Pipe 25	Q134010	Q123080J	1.50	28.96	28.94	1.3	375
Pipe 251	Q123080J	Q123070J	14.63	28.65	28.37	1.9	825
Pipe 24	Q133010	Q123070J	11.68	29.13	28.65	4.1	375
Pipe 26	Q135010	Q123080J	9.28	29.61	29.20	4.4	300
Pipe 380	Q136020	Q136010	13.01	31.50	31.20	2.3	375
Pipe 37	Q136010	Q1230100.	10.68	31.20	30.65	5.2	300
Pipe 250	Q1230100J	Q123080J	60.27	30.32	28.65	2.8	825
Pipe 377	Q138010	Q1230130	8.73	33.80	33.64	1.8	375
Pipe 520	Q1230130	Q1230126.	5.46	32.99	32.86	2.4	525
Pipe 519	Q1230126J	Q1230123.	45.90	32.86	31.90	2.1	525
Pipe 518	Q1230123J	Q1230120.	11.71	31.90	31.61	2.5	525
Pipe 379	Q1230120J	Q1230110.	29.10	31.61	30.89	2.5	825
Pipe 249	Q1230110J	Q1230100.	20.40	30.89	30.32	2.8	825
Pipe 56	Q137030	Q127020	10.38	37.55	37.39	1.5	375
Pipe 55	Q127020	Q137010	90.65	37.39	33.80	4.0	375
Pipe 54	Q137010	Q1230130	19.45	33.80	33.49	1.6	375
Pipe 53	Q1230180	Q1230170	10.73	38.02	37.70	3.0	375
Pipe 52	Q1230170	Q1230160.	90.79	37.62	34.85	3.1	375
Pipe 376	Q1230160J	Q1230150	7.49	34.80	34.76	0.5	375
Pipe 131	Q1230150	Q1230140	45.28	34.52	33.73	1.7	450
Pipe 378	Q1230140	Q1230130	14.45	33.71	33.49	1.5	375
Pipe 372	Q145010	Q141090	16.95	30.14	29.66	2.8	375
Pipe 527	Q141070	Q141060J	1.39	27.40	27.38	1.4	450
Pipe 364	Q143010	Q141030	9.80	26.34	26.25	0.9	300
Pipe 31	Q142040	Q142030	28.23	28.70	28.22	1.7	300
Pipe 30	Q142030	Q142020	44.89	28.22	27.23	2.2	375
Pipe 29	Q142020	Q142010	46.54	27.23	26.40	1.8	375
Pipe 129	Q142010	Q141020	13.97	26.40	26.00	2.9	450
Pipe 27	Q10590	Q10580	9.11	26.27	26.20	0.8	450
Pipe 28	Q14710	Q10580	15.17	26.63	26.45	1.2	375

Pipe Name	From Pit	To Pit	Length (m)	U/S IL	DIS IL	Slope (\%)	Nom. Diameter (mm)
Pipe 368	Q148010	Q10600J	7.05	26.34	26.31	0.4	450
Pipe 367	Q149010	Q10610J	1.33	27.15	27.00	11.3	375
Pipe 11	Q153010	Q150030	11.66	28.41	28.17	2.1	375
Pipe 51	Q154010	Q150050	39.78	31.76	30.60	2.9	375
Pipe 552	Q158010	Q1500115	15.53	34.62	34.38	1.6	375
Pipe 14	Q161020	Q161010	9.56	29.60	29.55	0.5	375
Pipe 13	Q161010	Q160020	9.42	29.62	29.40	2.3	375
Pipe 12	Q160020	Q160010	40.90	29.56	28.30	3.1	375
Pipe 165	Q160010	Q10630	11.26	28.30	28.20	0.9	525
Pipe 281	Q10630	Q10620J	74.79	27.57	25.40	2.9	1050
Pipe 295	Q10620J	Q10610J	8.70	26.59	26.41	2.1	1350
Pipe 49	Q162010	Q160030	10.76	30.29	30.15	1.3	375
Pipe 15	Q160030	Q160020	23.05	30.20	29.55	2.8	375
Pipe 50	Q160060	Q160050	23.06	32.03	31.42	2.6	375
Pipe 17	Q160050	Q160040	41.18	31.44	30.52	2.2	375
Pipe 16	Q160040	Q160030	29.29	30.67	30.20	1.6	375
Pipe 19	Q163020	Q163010	9.17	31.69	31.61	0.9	375
Pipe 18	Q163010	Q160050	9.64	31.53	31.46	0.7	375
Pipe 22	Q165030	Q165020	12.73	31.97	31.77	1.6	375
Pipe 46	Q165020	Q165010J	25.48	31.20	30.58	2.4	375
Pipe 45	Q165010J	Q10670J	16.07	29.30	29.20	0.6	375
Pipe 262	Q10670J	Q10660J	28.74	29.92	29.43	1.7	900
Pipe 261	Q10660J	Q10650J	25.05	29.43	29.00	1.7	900
Pipe 283	Q10650J	Q10640	73.67	29.00	27.75	1.7	1050
Pipe 282	Q10640	Q10630	9.90	27.75	27.57	1.8	1050
Pipe 47	Q166030	Q166020	40.34	35.05	34.33	1.8	375
Pipe 43	Q166020	Q166010	14.80	34.33	33.87	3.1	375
Pipe 42	Q166010	Q10680J	61.04	33.87	31.00	4.7	375
Pipe 200	Q10680J	Q10670J	31.81	30.76	30.22	1.7	600
Pipe 44	Q167010	Q166010	9.87	34.19	34.10	0.9	375
Pipe 21	Q169010	Q168010	10.99	31.65	31.60	0.5	375
Pipe 48	Q168010	Q10690J	21.52	31.81	31.60	1.0	375
Pipe 202	Q10690J	Q10680J	24.25	31.17	30.76	1.7	600
Pipe 20	Q168020	Q168010	9.63	31.79	31.60	2.0	375
Pipe 41	Q159010	Q1500120	12.81	35.10	35.00	0.8	375
Pipe 8	Q1500150	Q1500140	12.61	37.87	37.65	1.7	375
Pipe 127	Q10790	Q10780	10.36	38.47	38.30	1.6	450
Pipe 126	Q10780	Q10776J	47.46	38.30	37.00	2.7	450
Pipe 740	Q10776J	Q10773J	10.84	37.00	36.75	2.3	450
Pipe 739	Q10773J	Q10770J	38.21	36.75	35.84	2.4	450
Pipe 158	Q10770J	Q10760	8.49	35.63	35.54	1.1	525
Pipe 513	Q10760	Q10750	20.35	35.54	35.34	1.0	525
Pipe 157	Q10750	Q10740J	45.58	35.33	33.90	3.1	525
Pipe 156	Q10740J	Q10730J	12.76	33.90	33.53	2.9	525
Pipe 155	Q10730J	Q10720	40.44	33.53	32.42	2.7	525
Pipe 163	Q10720	Q10710	28.27	32.32	31.67	2.3	525
Pipe 164	Q10710	Q10700	9.98	31.66	31.52	1.4	525
Pipe 201	Q10700	Q10690J	23.35	31.55	31.17	1.6	600
Pipe767	Q212020	Q212010	11.26	17.38	16.59	7.0	375
Pipe768	Q212010	Q2170140	12.46	16.59	16.32	2.2	375
Pipe769	Q2170140	Q2070130	8.29	16.07	16.02	0.6	600
Pipe766	Q2070130	Q2070120	79.79	16.02	15.40	0.8	675
Pipe 234	Q2070120	Q2070110	93.99	15.40	14.27	1.2	600
Pipe 761	Q2070110	Q2070100.	3.11	14.27	14.19	2.6	600
Pipe 514	Q2070100J	Q207090J	3.25	14.19	14.10	2.8	600
Pipe 509	Q207090J	Q207080	7.77	14.10	13.88	2.8	600
Pipe 232	Q207080	Q207070	60.78	13.88	13.39	0.8	600
Pipe827	Q213020	Q213010	12.38	20.83	19.69	9.2	375
Pipe830	Q213010	Q2170180	15.29	19.69	19.06	4.1	375
Pipe835	Q2170180	Q2070170	7.82	18.89	18.88	0.2	525
Pipe838	Q2070170	Q2070160	62.47	18.88	17.67	1.9	525
Pipe772	Q2070160	Q2070150	68.91	17.67	16.39	1.9	525
Pipe765	Q2070150	Q2170140	30.34	16.39	16.07	1.1	525
Pipe780	Q2070230	Q2070220	14.28	24.05	24.02	0.2	375
Pipe792	Q2070220	Q2070210	17.49	24.02	22.77	7.2	375
Pipe793	Q2070210	Q2070200	78.14	22.70	21.38	1.7	450
Pipe794	Q2070200	Q2070190	70.66	21.38	19.38	2.8	450
Pipe819	Q2070190	Q2170180	34.03	19.38	18.88	1.5	525
Pipe779	Q214010	Q2070220	23.52	24.15	24.02	0.6	375
Pipe784	Q2110100	Q2070120	4.67	15.89	15.85	0.9	375
Pipe 328	Q2410100J	Q241090	82.59	9.05	8.62	0.5	1800
Pipe 546	Q241090	Q241080J	8.03	8.62	8.58	0.5	1800

Table A3: Detailed DRAINS Subcatchment Data

Name	Pit/Node	SubCatchment Area (ha)	\% Paved Area	\% Grassed Area	Paved Time	Grassed Time
Cat109	Q271050	0.98	53.4	46.6	2.9	5.8
Cat108	Q273010	1.60	54.6	45.4	3.4	6.8
Cat68	Q1100140	2.49	67.0	33.0	4.1	8.2
Cat66	Q110080	1.56	71.0	29.0	4.0	8.0
Cat33	Q101010	5.54	59.4	40.6	7.2	14.4
Cat30	Q10420	0.27	89.1	10.9	4.0	8.1
Cat28	Q95010	1.06	89.9	10.1	7.4	14.8
Cat27	Q10340	3.65	30.0	70.0	7.0	14.0
Cat187	Q10250	3.54	58.6	41.4	8.1	16.3
Cat141	Q1080	1.07	64.9	35.1	6.9	13.8
Cat140	Q1070	1.89	61.6	38.4	5.8	11.6
Cat127	Q1040	0.45	60.2	39.8	2.5	4.9
Cat119	Q1030	0.42	57.9	42.1	1.9	3.8
Cat67	Q115040	1.39	63.4	36.6	4.1	8.3
Cat69	Q155010	1.12	73.0	27.0	3.5	7.0
Cat73	Q150050	1.03	56.3	43.7	3.0	6.0
Cat74	Q150030	0.98	56.0	44.0	3.4	6.8
Cat62	Q10580	0.17	89.8	10.2	1.9	3.8
Cat59	Q10540J	1.39	50.1	49.9	4.0	7.9
Cat58	Q10520	0.42	50.2	49.8	2.3	4.7
Cat72	Q157010	0.22	89.3	10.7	1.5	3.0
Cat56	Q120010	2.95	62.1	37.9	4.9	9.9
Cat34	Q107020	4.46	59.5	40.5	7.4	14.8
Cat65	Q106090	2.51	51.0	49.0	6.4	12.8
Cat211	Q99070	3.23	59.5	40.5	4.0	7.9
Cat10	Q84010	2.04	60.6	39.4	6.8	13.6
Cat14	Q96090	1.47	58.9	41.1	3.1	6.1
Cat4	Q71010	2.11	76.9	23.1	6.4	12.7
Cat197	Q64040	1.05	58.9	41.1	2.6	5.2
Cat7	Q72050	0.25	10.0	90.0	3.5	7.0
Cat1	Q240150	3.32	55.3	44.7	4.9	9.8
Cat2	Q76010	0.92	54.5	45.5	2.6	5.2
Cat177	Q180510	1.12	63.6	36.4	3.4	6.8
Cat176	Q1800100	1.43	63.2	36.8	4.1	8.2
Cat144	Q0510	1.01	58.1	41.9	3.4	6.8
Cat212	Q640160	2.00	54.0	46.0	3.8	7.6
Cat3	Q640150	0.45	75.3	24.7	4.5	9.0
Cat6	Q640130	1.19	55.1	44.9	2.6	5.2
Cat90	H14010	0.58	68.1	31.9	2.9	5.7
Cat91	H11010	0.64	63.6	36.4	3.4	6.7
Cat93	Q1500120	0.48	40.0	60.0	4.3	8.7
Cat92	Q150090	0.56	70.0	30.0	3.2	6.4
Cat106	Q68210	1.24	61.0	39.0	5.4	10.9
Cat8	Q85070	0.30	71.0	29.0	1.4	2.7
Cat9	Q85060	1.81	57.1	42.9	3.7	7.5
Cat12	Q85020	1.53	60.4	39.6	4.8	9.5
Cat13	Q82040	0.68	23.6	76.4	1.9	3.9
Cat190	Q210520	0.96	52.4	47.6	2.9	5.9
Cat188	Q230010	1.55	70.0	30.0	4.2	8.5
Cat189	Q1800360	4.18	70.0	30.0	3.7	7.4
Cat160	Q1800300	0.40	74.2	25.8	5.0	10.1
Cat151	Q1800200	0.99	62.7	37.3	3.3	6.6
Cat152	Q1800160	1.39	64.0	36.0	4.8	9.5
Cat94	Q144030	1.68	59.9	40.1	5.0	9.9
Cat49	Q144020	0.19	90.0	10.0	3.5	7.0
Cat51	Q141030	2.27	58.2	41.8	5.2	10.4
Cat89	H13010	0.56	84.4	15.6	1.8	3.6
Cat161	Q208010	1.57	62.8	37.2	4.2	8.4
Cat52	Q127010	1.59	45.2	54.8	4.2	8.4
Cat54	Q123010	0.27	89.6	10.4	3.9	7.9
Cat205	Q1800470	2.76	58.7	41.3	6.1	12.2
Cat213	Q1800440	0.33	89.7	10.3	3.6	7.2
Cat201	Q1800410	3.23	70.0	30.0	4.8	9.7
Cat200	Q1800400	3.51	70.0	30.0	4.7	9.4
Cat203	Q1800370	0.32	87.7	12.3	3.8	7.6
Cat199	Q238030	1.56	60.7	39.3	3.8	7.6
Cat198	Q238010	5.51	70.0	30.0	5.1	10.1
Cat204	Q236030	1.66	59.0	41.0	4.3	8.5
Cat202	Q231020	7.02	70.0	30.0	6.7	13.5
Cat191	Q207070	1.17	70.0	30.0	3.4	6.9
Cat186	Q209010	1.38	60.3	39.7	4.0	7.9

Name	Pit/Node	SubCatchment Area (ha)	\% Paved Area	\% Grassed Area	Paved Time	Grassed Time
Cat185	Q225010	3.20	61.3	38.7	5.4	10.8
Cat196	Q80010	7.44	40.0	60.0	7.6	15.2
Cat206	Q81020	4.86	30.0	70.0	4.8	9.6
Cat11	Q86020	0.82	64.1	35.9	5.0	10.0
Cat18	Q820150	0.88	58.5	41.5	4.6	9.2
Cat17	Q820110	2.45	59.2	40.8	6.2	12.4
Cat16	Q82080	2.49	58.9	41.1	6.5	12.9
Cat25	Q82070	0.16	89.5	10.5	2.4	4.7
Cat35	Q870130	2.21	57.4	42.6	4.6	9.2
Cat36	Q870180	0.75	64.9	35.1	2.6	5.1
Cat32	Q91010	2.80	57.9	42.1	5.8	11.5
Cat31	Q89010	2.73	56.2	43.8	5.1	10.2
Cat29	Q95020	5.27	56.5	43.5	6.4	12.8
Cat15	Q100020	1.70	58.4	41.6	3.2	6.5
Cat22	Q103070	0.78	54.2	45.8	2.3	4.7
Cat23	Q103020	0.91	61.0	39.0	3.8	7.5
Cat24	Q101050	0.80	64.2	35.8	3.8	7.6
Cat55	Q122020	1.49	55.1	44.9	3.1	6.3
Cat57	Q122010	0.17	89.7	10.3	2.6	5.1
Cat61	Q140010	0.75	58.7	41.3	2.5	4.9
Cat60	Q139010	0.11	89.9	10.1	1.9	3.7
Cat43	Q126010	1.75	59.5	40.5	5.2	10.4
Cat210	Q139030	0.39	62.5	37.5	1.5	3.0
Cat63	Q1060130	1.61	55.0	45.0	4.8	9.5
Cat64	Q1060110	2.68	30.0	70.0	5.6	11.1
Cat178	Q204010	0.79	65.6	34.4	2.7	5.5
Cat133	Q16040	0.89	62.1	37.9	4.9	9.8
Cat136	Q14010	0.62	65.4	34.6	2.4	4.8
Cat137	Q18910	0.42	62.2	37.8	2.2	4.5
Cat173	Q188030	0.30	60.3	39.7	1.6	3.2
Cat174	Q188010	0.38	61.5	38.5	1.6	3.3
Cat138	Q200010	2.66	61.5	38.5	4.3	8.6
Cat132	Q188050	0.20	89.9	10.1	3.8	7.6
Cat171	Q241070	2.06	59.4	40.6	5.1	10.1
Cat172	Q241050	0.79	62.4	37.6	2.1	4.2
Cat168	Q244050	0.82	62.5	37.5	2.4	4.9
Cat128	Q13010	1.46	62.3	37.7	5.0	10.0
Cat121	Q2050	0.22	63.9	36.1	1.9	3.8
Cat120	Q2040	0.67	58.7	41.3	3.1	6.1
Cat114	Q2020	2.25	60.9	39.1	6.8	13.7
Cat131	Q17010	1.11	63.2	36.8	3.3	6.6
Cat135	Q14040	0.57	63.4	36.6	2.5	5.0
Cat134	Q14070	0.45	60.4	39.6	2.1	4.2
Cat110	Q30160	1.36	61.2	38.8	5.5	11.1
Cat125	Q30130	0.35	69.5	30.5	3.8	7.6
Cat123	Q30110	0.50	63.0	37.0	3.8	7.6
Cat117	Q3040	2.00	63.1	36.9	4.7	9.3
Cat118	Q3010	0.47	61.4	38.6	3.0	6.0
Cat129	Q11020	0.87	61.1	38.9	4.2	8.4
Cat124	Q9030	1.51	59.1	40.9	5.0	9.9
Cat122	Q7010	1.34	59.7	40.3	5.2	10.5
Cat116	Q6010	0.94	61.2	38.8	3.3	6.5
Cat113	Q4010	0.58	62.7	37.3	2.0	4.0
Cat143	Q21010	0.96	62.1	37.9	2.4	4.8
Cat208	Q31010	2.67	67.8	32.2	11.2	22.3
Cat142	Q48010	0.48	56.1	43.9	1.8	3.6
Cat209	Q37010	0.98	57.9	42.1	2.9	5.7
Cat139	Q24020	1.48	62.7	37.3	6.3	12.7
Cat96	Q33060	1.02	90.0	10.0	4.7	9.4
Cat111	Q33050	0.46	85.1	14.9	2.5	5.0
Cat207	Q33040	1.97	63.1	36.9	7.8	15.7
Cat98	Q38010	0.89	59.1	40.9	3.5	6.9
Cat97	Q40010	1.35	58.2	41.8	3.9	7.7
Cat100	Q41010	0.35	56.6	43.4	1.5	3.0
Cat99	Q42010	0.61	65.2	34.8	3.2	6.4
Cat95	Q240130	0.58	90.0	10.0	3.0	6.1
Cat103	Q53050	1.82	60.3	39.7	5.3	10.6
Cat105	Q53040	0.25	80.3	19.7	4.2	8.3
Cat153	Q53010	3.67	60.8	39.2	7.6	15.1
Cat101	Q25090	1.00	63.2	36.8	4.7	9.5
Cat102	Q25080	0.20	89.9	10.1	4.2	8.3
Cat156	Q25070	0.07	88.8	11.2	1.6	3.2
Cat155	Q25050	0.11	90.0	10.0	2.1	4.1
Cat157	Q30010	0.44	59.6	40.4	1.7	3.4
Cat158	Q55010	0.87	58.9	41.1	2.9	5.8
Cat154	Q28010	0.92	60.9	39.1	3.2	6.3
Cat147	Q26020	0.63	58.6	41.4	2.1	4.3
Cat146	Q52010	1.13	59.7	40.3	4.5	9.1
Cat148	Q51010	0.43	62.9	37.1	3.0	5.9
Cat149	Q50010	0.46	56.6	43.4	2.2	4.5

Name	Pit/Node	SubCatchment Area (ha)	\% Paved Area	\% Grassed Area	Paved Time	Grassed Time
Cat159	Q221020	2.03	59.6	40.4	3.7	7.4
Cat214	Q221010	0.14	89.9	10.1	2.0	4.0
Cat150	Q219010	0.86	58.8	41.2	2.8	5.6
Cat145	Q218010	0.60	72.0	28.0	6.9	13.8
Cat183	Q57010	2.82	62.9	37.1	0.0	0.0
Cat104	Q70040	0.90	62.7	37.3	3.1	6.1
Cat107	Q70010	1.22	60.6	39.4	3.5	7.0
Cat5	Q640170	0.83	59.1	40.9	1.7	3.4
Cat180	G1278020	2.40	58.5	41.5	3.7	7.5
Cat179	G158030	2.08	60.1	39.9	2.6	5.2
Cat181	Q203010	2.34	54.8	45.2	4.5	9.0
Cat182	Q201030	0.28	60.9	39.1	2.0	4.0
Cat170	Q186010	0.71	58.5	41.5	2.9	5.9
Cat166	Q242010	0.56	61.0	39.0	2.7	5.3
Cat169	Q243010	0.63	57.7	42.3	2.6	5.2
Cat165	Q183010	0.65	52.8	47.2	2.5	5.0
Cat162	Q245050	1.95	62.4	37.6	4.9	9.9
Cat163	Q245040	1.58	62.8	37.2	4.9	9.8
Cat164	Q245020	0.60	59.8	40.2	4.1	8.2
Cat167	Q245010	0.98	62.1	37.9	4.3	8.5
Cat71	Q152010	1.35	56.9	43.1	3.4	6.8
Cat21	Q101070	1.43	58.9	41.1	3.7	7.3
Cat20	Q101090	1.89	63.8	36.2	5.1	10.1
Cat19	Q1010130	1.98	67.0	33.0	6.7	13.4
Cat53	Q124030	0.56	65.2	34.8	4.6	9.2
Cat42	Q129010	1.06	59.0	41.0	3.6	7.3
Cat37	Q132010	1.41	60.8	39.2	5.3	10.6
Cat41	Q133010	1.12	55.4	44.6	2.5	5.1
Cat38	Q136020	1.07	52.8	47.2	2.8	5.5
Cat39	Q138010	0.24	89.9	10.1	2.9	5.8
Cat40	Q1230120	0.45	50.0	50.0	1.5	3.1
Cat45	Q137030	1.65	55.4	44.6	4.3	8.6
Cat46	Q127020	0.30	89.8	10.2	3.6	7.2
Cat47	Q1230180	0.90	57.0	43.0	3.5	6.9
Cat48	Q1230150	1.43	54.5	45.5	3.5	7.0
Cat44	Q1230140	2.45	55.2	44.8	6.3	12.6
Cat50	Q141070	1.12	59.1	40.9	3.3	6.6
Cat70	Q10590	1.28	57.3	42.7	3.8	7.6
Cat75	Q148010	1.42	56.6	43.4	3.6	7.2
Cat85	Q161020	0.45	60.5	39.5	13.7	27.4
Cat76	Q10630	0.18	90.0	10.0	3.1	6.3
Cat88	Q163010	1.15	66.3	33.7	5.9	11.8
Cat81	Q165030	0.60	60.2	39.8	2.3	4.7
Cat82	Q165020	0.18	78.6	21.4	1.2	2.3
Cat84	Q10670J	0.70	50.0	50.0	1.5	2.9
Cat83	Q10640	1.10	57.3	42.7	2.6	5.3
Cat86	Q169010	3.30	53.4	46.6	4.2	8.3
Cat87	Q168010	0.12	89.7	10.3	2.1	4.2
Cat77	Q10790	2.11	57.2	42.8	3.7	7.4
Cat78	Q10780	0.22	89.8	10.2	2.0	4.0
Cat79	Q10760	2.49	55.5	44.5	4.0	8.0
Cat80	Q10750	0.29	90.0	10.0	2.5	5.0
Cat193	Q212020	2.33	70.0	30.0	4.3	8.6
Cat192	Q2070110	1.39	70.0	30.0	5.1	10.2
Cat194	Q213020	2.17	70.0	30.0	6.1	12.3
Cat195	Q2070230	1.62	54.4	45.6	3.7	7.4

Table A4: Limited DRAINS Stormwater Pit Data

Pit Name	Pit Type	Pit Size	Surface Elevation	Ku	$\begin{array}{\|c} \text { Ponding } \\ \text { Vol } \end{array}$	Max Ponding Depth	Blocking Factor	Bolt down lid
Q1800380	OnGrade	1.8 m lintel	18.01	1.5	-	-	0.5	No
Q1800370	OnGrade	Large	18.18	1.5	-	-	0	No
Q1800360	Sag	3.0 m lintel	15.91	1.5	5	0.2	0.5	No
Q1800340J	OnGrade	RM. 7 Grated Pit	16.47	1.5	-	-	0.5	Yes
Q1800330J	OnGrade	RM. 7 Grated Pit	15.97	1.5	-	-	0.5	Yes
Q1800320	Sag	1.8 m lintel	14.96	1.5	5	0.2	0.5	No
Q1800310J	OnGrade	RM. 7 Grated Pit	15.2	1.5	-	-	0.5	Yes
Q1800300	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \end{aligned}$	14.93	1.5	5	0.2	0.5	No
Q1800290	Sag	3.0 m lintel	14.19	1.5	5	0.2	0.5	No
Q1800280J	OnGrade	RM. 7 Grated Pit	14.4	1.5	-	-	0.5	Yes
Q1800275J	OnGrade	RM. 7 Grated Pit	14.54	1.5	-	-	0.5	Yes
Q1800270	Sag	Grated pit	14.16	1.5	5	0.2	0.5	No
Q1800260	OnGrade	RM. 7 Grated Pit	13.92	1.5	-	-	0.5	No
Q1800250J	OnGrade	RM. 7 Grated Pit	13.9	1.5	-	-	0.5	Yes
Q1800230	OnGrade	1.8 m lintel	13.79	1.5	-	-	0.5	Yes
Q1800220	OnGrade	1.8 m lintel	13.54	1.5	-	-	0.5	No
Q1800210J	OnGrade	RM. 7 Grated Pit	13.6	1.5	-	-	0.5	Yes
Q1800200	Sag	3.0 m lintel	13.5	1.5	5	0.2	0.5	No
Q1800180	OnGrade	1.8 m lintel	12.99	1.5	-	-	0.5	No
Q1800170	OnGrade	1.8 m lintel	12.91	1.5	-	-	0.5	No
Q1800160	Sag	4.2 m lintel	12.66	1.5	5	0.2	0.5	No
Q1800150	OnGrade	RM. 7 Grated Pit	12.8	1.5	-	-	0.5	Yes
Q1800140J	OnGrade	RM. 7 Grated Pit	12.25	1.5	-	-	0.5	Yes
Q1800130J	OnGrade	RM. 7 Grated Pit	12.38	1.5	-	-	0.5	Yes
Q1800120	Sag	1.8 m lintel	11.61	1.5	5	0.2	0.5	No
Q1800110J	OnGrade	RM. 7 Grated Pit	11.63	1.5	-	-	0.5	Yes
Q1800100	Sag	4.2 m lintel	10.47	1.5	5	0.2	0.5	No
Q180090J	OnGrade	RM. 7 Grated Pit	10.67	1.5	-	-	0.5	Yes
Q180080J	OnGrade	RM. 7 Grated Pit	10.53	1.5	-	-	0.5	Yes
Q180060J	OnGrade	RM. 7 Grated Pit	10.1	1.5	-	-	0.5	Yes
Q180050J	OnGrade	RM. 7 Grated Pit	10.28	1.5	-	-	0.5	Yes
Q180040J	OnGrade	RM. 7 Grated Pit	10.5	1.5	-	-	0.5	Yes
Q180030J	OnGrade	RM. 7 Grated Pit	10.4	1.5	-	-	0.5	Yes
Q180020J	OnGrade	RM. 7 Grated Pit	10.22	1.5	-	-	0.5	No
Q180010J	OnGrade	RM. 7 Grated Pit	10.25	1.5	-	-	0.5	Yes
Q180000	Node	-	9.9	-	-	-	-	-
Q19010	OnGrade	1.8 m lintel	12.6	1.5	-	-	0.5	No
Q1070	OnGrade	1.2 m lintel	12.65	1.5	-	-	0.5	No
Q1050J	Sag	4.2 m lintel	12.35	1.5	5	0.2	0.5	No
Q2410110	Sag	1.2 m lintel	11.91	1.5	5	0.2	0.5	No
Q1040	OnGrade	1.2 m lintel	12.64	1.5	-	-	0.5	No
Q1030	OnGrade	RM. 7 Grated Pit	11.99	1.5	-	-	0.5	No
Q1020J	OnGrade	RM. 7 Grated Pit	11.2	1.5	-	-	0.5	Yes
Q1010	OnGrade	1.2 m lintel	11.4	1.5	-	-	0.5	No
Q1000	Node	-	9.07	-	-	-		-
Q30120	OnGrade	1.8 m lintel	14.27	1.5	-	-	0.5	No
Q30111J	OnGrade	Large	14.31	1.5	-	-	0	No
Q30110	OnGrade	1.8 m lintel	14.26	1.5	-	-	0.5	No
Q30100	Sag	2.4 m lintel	13.92	1.5	5	0.2	0.5	No
Q3090	OnGrade	3.0 m lintel	13.96	1.5	-	-	0.5	No
Q3080	OnGrade	1.8 m lintel	13.99	1.5	-	-	0.5	No
Q3070	OnGrade	1.8 m lintel	13.26	1.5	-	-	0.5	No
Q3071	Sag	1.8 m lintel	13.34	1.5	5	0.2	0.5	No
Q3060	OnGrade	1.8 m lintel	13.13	1.5	-	-	0.5	No
Q3050	OnGrade	1.8 m lintel	12.58	1.5	-	-	0.5	No
Q3040	OnGrade	1.8 m lintel	12.21	1.5	-	-	0.5	No
Q3030	Sag	1.8 m lintel	12.02	1.5	5	0.2	0.5	No
Q3020	OnGrade	1.8 m lintel	12.19	1.5	-	-	0.5	No
Q3010	Sag	4.2 m lintel	12.12	1.5	5	0.2	0.5	No
Q2030J	OnGrade	RM. 7 Grated Pit	12.43	1.5	-	-	0.5	Yes
Q2020	Sag	1.8 m lintel	11.05	1.5	5	0.2	0.5	No
Q2010J	OnGrade	RM. 7 Grated Pit	11.65	1.5	-	-	0.5	Yes
Q2000	Node	-	9.07	-	-	-	-	-
Q24030J	OnGrade	RM. 7 Grated Pit	18.2	1.5	-	-	0.5	Yes
Q24020	OnGrade	Large	16.13	1.5	-	-	0	No
Q24010J	OnGrade	RM. 7 Grated Pit	15.78	1.5	-	-	0.5	Yes
Q48010	OnGrade	1.8 m lintel	14.34	1.5	-	-	0.5	No
Q10120J	OnGrade	RM. 7 Grated Pit	14.23	1.5	-	-	0.5	Yes
Q10110J	OnGrade	RM. 7 Grated Pit	13.82	1.5	-	-	0.5	Yes
Q10100J	OnGrade	RM. 7 Grated Pit	13.55	1.5	-	-	0.5	Yes
Q1090	OnGrade	1.8 m lintel	13	1.5	-	-	0.5	No

Pit Name	Pit Type	Pit Size	Surface Elevation	Ku	Ponding Vol	Max Ponding Depth	Blocking Factor	Bolt down lid
Q1080	Sag	4.2 m lintel	13	1.5	5	0.2	0.5	No
Q1075	OnGrade	RM. 7 Grated Pit	12.65	1.5	-	-	0.5	No
Q2070	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	12.08	1.5	5	0.2	0.5	No
Q2060J	OnGrade	RM. 7 Grated Pit	11.95	1.5	-	-	0.5	Yes
Q2055	OnGrade	1.8 m lintel	12.05	1.5	-	-	0.5	No
Q2050	OnGrade	1.2 m lintel	12.66	1.5	-	-	0.5	No
Q2040	OnGrade	RM. 7 Grated Pit	12	1.5	-	-	0.5	No
Q10670J	OnGrade	Large	31.15	1.5	-	-	0	No
Q10660J	OnGrade	RM. 7 Grated Pit	30.55	1.5	-	-	0.5	Yes
Q10650J	OnGrade	RM. 7 Grated Pit	31.3	1.5	-	-	0.5	Yes
Q10640	Sag	2.4 m lintel	29.17	1.5	5	0.2	0.5	No
Q10630	Sag	4.2 m lintel	29.43	1.5	5	0.2	0.5	No
Q10620J	OnGrade	RM. 7 Grated Pit	28.5	1.5	-	-	0.5	Yes
Q10610J	OnGrade	RM. 7 Grated Pit	28.15	1.5	-	-	0.5	Yes
Q10600J	OnGrade	RM. 7 Grated Pit	27.45	1.5	-	-	0.5	Yes
Q10580	Sag	4.2 m lintel	27.07	1.5	5	0.2	0.5	No
Q10570J	OnGrade	RM. 7 Grated Pit	26.81	1.5	-	-	0.5	Yes
Q10560J	OnGrade	RM. 7 Grated Pit	26.58	1.5	-	-	0.5	Yes
Q10550J	OnGrade	RM. 7 Grated Pit	26.4	1.5	-	-	0.5	Yes
Q10540J	Sag	4.2 m lintel	26.46	1.5	5	0.2	0.5	No
Q10530	OnGrade	RM. 7 Grated Pit	25.3	1.5	-	-	0.5	Yes
Q10520	OnGrade	RM. 7 Grated Pit	24.87	1.5	-	-	0.5	Yes
Q10510J	OnGrade	RM. 7 Grated Pit	24.1	1.5	-	-	0.5	Yes
Q10500J	OnGrade	RM. 7 Grated Pit	23.7	1.5	-	-	0.5	Yes
Q10490J	OnGrade	RM. 7 Grated Pit	23.35	1.5	-	-	0.5	Yes
Q10480J	OnGrade	RM. 7 Grated Pit	23.7	1.5	-	-	0.5	Yes
Q10470J	OnGrade	RM. 7 Grated Pit	23.7	1.5	-	-	0.5	Yes
Q10460J	Sag	4.2 m lintel	23.4	1.5	5	0.2	0.5	No
Q10450J	OnGrade	RM. 7 Grated Pit	23.85	1.5	-	-	0.5	Yes
Q10440J	OnGrade	RM. 7 Grated Pit	23.25	1.5	-	-	0.5	Yes
Q101010	Sag	4.2 m lintel	22.65	1.5	5	0.2	0.5	No
Q10420	Sag	4.2 m lintel	22.76	1.5	5	0.2	0.5	No
Q10410J	OnGrade	RM. 7 Grated Pit	21.57	1.5	-	-	0.5	Yes
Q10400J	OnGrade	RM. 7 Grated Pit	21.47	1.5	-	-	0.5	Yes
Q10390J	OnGrade	RM. 7 Grated Pit	21.1	1.5	-	-	0.5	Yes
Q95010	Sag	4.2 m lintel	20.74	1.5	5	0.2	0.5	No
Q10380J	OnGrade	RM. 7 Grated Pit	20.85	1.5	-	-	0.5	Yes
Q10370	OnGrade	RM. 7 Grated Pit	20.6	1.5	-	-	0.5	Yes
Q10360J	OnGrade	RM. 7 Grated Pit	20.3	1.5	-	-	0.5	Yes
Q10350J	Sag	4.2 m lintel	20	1.5	5	0.2	0.5	No
Q10340	OnGrade	1.8 m lintel	19.2	1.5	-	-	0.5	No
Q10330	OnGrade	1.8 m lintel	19.26	1.5	-	-	0.5	No
Q10320	OnGrade	RM. 7 Grated Pit	19.3	1.5	-	-	0.5	Yes
Q10310	OnGrade	RM. 7 Grated Pit	19.2	1.5	-	-	0.5	Yes
Q10300	OnGrade	RM. 7 Grated Pit	18.55	1.5	-	-	0.5	Yes
Q10290	OnGrade	RM. 7 Grated Pit	18.08	1.5	-	-	0.5	Yes
Q10280	OnGrade	RM. 7 Grated Pit	18.2	1.5	-	-	0.5	Yes
Q10270J	OnGrade	RM. 7 Grated Pit	17.25	1.5	-	-	0.5	Yes
Q10260J	OnGrade	RM. 7 Grated Pit	17.2	1.5	-	-	0.5	Yes
Q10250	Sag	4.2 m lintel	17.03	1.5	5	0.2	0.5	No
Q10240J	OnGrade	RM. 7 Grated Pit	17.5	1.5	-	-	0.5	Yes
Q10235J	OnGrade	RM. 7 Grated Pit	17.5	1.5	-	-	0.5	Yes
Q10230J	OnGrade	RM. 7 Grated Pit	17.2	1.5	-	-	0.5	Yes
Q10220J	OnGrade	RM. 7 Grated Pit	16.31	1.5	-	-	0.5	Yes
Q10210J	OnGrade	RM. 7 Grated Pit	16.1	1.5	-	-	0.5	Yes
Q10200J	OnGrade	RM. 7 Grated Pit	16	1.5	-	-	0.5	Yes
Q10190	Sag	4.2 m lintel	15.59	1.5	5	0.2	0.5	No
Q10180	OnGrade	1.8 m lintel	15.55	1.5	-	-	0.5	No
Q10170	OnGrade	1.8 m lintel	15.06	1.5	-	-	0.5	No
Q10165J	OnGrade	RM. 7 Grated Pit	15	1.5	-	-	0.5	Yes
Q10161	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	14.54	1.5	5	0.2	0.5	No
Q10160J	OnGrade	RM. 7 Grated Pit	14.9	1.5	-	-	0.5	Yes
Q10150J	OnGrade	RM. 7 Grated Pit	14.85	1.5	-	-	0.5	Yes
Q10140	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	14.44	1.5	5	0.2	0.5	No
Q123070J	OnGrade	Large	30.15	1.5	-	-	0	No
Q123050J	OnGrade	RM. 7 Grated Pit	28.15	1.5	-	-	0.5	Yes
Q123040J	OnGrade	RM. 7 Grated Pit	27.65	1.5	-	-	0.5	Yes
Q123030J	OnGrade	RM. 7 Grated Pit	25.6	1.5	-	-	0.5	Yes
Q123020J	OnGrade	RM. 7 Grated Pit	25.6	1.5	-	-	0.5	Yes
Q123010	Sag	4.2 m lintel	25.5	1.5	5	0.2	0.5	No
Q101040	OnGrade	Large	23.03	1.5	-	-	0	No
Q101030	Sag	0.9 m lintel	22.96	1.5	5	0.2	0.5	No
Q101020	OnGrade	0.9 m lintel	22.7	1.5	-	-	0.5	No
Q150010	Sag	4.2 m lintel	28.5	1.5	5	0.2	0	No
Q82030	OnGrade	Large	24.14	1.5	-	-	0	No
Q82020	OnGrade	1.8 m lintel	22.62	1.5	-	-	0.5	No
Q82010	OnGrade	1.8 m lintel	20.99	1.5	-	-	0.5	No
Q64042J	OnGrade	Large	19.64	1.5	-	-	0	No

Pit Name	Pit Type	Pit Size	Surface Elevation	Ku	Ponding Vol	Max Ponding Depth	Blocking Factor	Bolt down lid
Q64040	OnGrade	1.8 m lintel	17.88	1.5	-	-	0.5	No
Q64030J	OnGrade	RM. 7 Grated Pit	17.95	1.5	-	-	0.5	Yes
Q64020J	OnGrade	RM. 7 Grated Pit	17.8	1.5	-	-	0.5	Yes
Q64010	OnGrade	1.8 m lintel	17.24	1.5	-	-	0.5	No
Q260080	OnGrade	Large	14.6	1.5	-	-	0	No
Q260070J	Sag	RM. 7 Grated Pit	14.58	1.5	5	0.2	0.5	Yes
Q260060J	Sag	4.2 m lintel	14	1.5	5	0.2	0.5	No
Q260050J	Sag	RM. 7 Grated Pit	13.9	1.5	5	0.2	0.5	Yes
Q264010J	Sag	RM. 7 Grated Pit	13.25	1.5	5	0.2	0.5	Yes
Q263010	Sag	4.2 m lintel	12.98	1.5	5	0.2	0.5	No
Q260020J	OnGrade	3.6 m lintel	12.9	1.5	-	-	0.5	No
Q260010J	Sag	RM. 7 Grated Pit	12.2	1.5	5	0.2	0.5	Yes
Q260000	Node	-	9.4	-	-	-	-	-
N1050	Sag	1.8 m lintel	7.12	1.5	5	0.2	0	No
N1040	Sag	1.8 m lintel	7.2	1.5	5	0.2	0.5	No
N1030	Sag	1.2 m lintel	6.72	1.5	5	0.2	0.5	No
N1000	Node	-	2	-	-	-	-	-
N5040	OnGrade	Large	6.9	1.5	-	-	0	No
N5030J	Sag	RM. 7 Grated Pit	7	1.5	5	0.2	0.5	Yes
N5020	Sag	1.2 m lintel	7.1	1.5	5	0.2	0.5	No
N5010	Sag	1.2 m lintel	7.15	1.5	5	0.2	0.5	No
N5000	Node	-	5.1	-				
G1470180	OnGrade	Large	11.15	1.5	-	-	0	No
G1470170	Sag	1.8 m lintel	11.03	1.5	5	0.2	0.5	No
G1470160	Sag	1.8 m lintel	11.1	1.5	5	0.2	0.5	No
G1470150	Sag	1.8 m lintel	11.2	1.5	5	0.2	0.5	No
G1470140	Sag	4.2 m lintel	11.4	1.5	5	0.2	0.5	No
G1470130	OnGrade	1.8 m lintel	11.46	1.5	-	-	0.5	No
G1470125	OnGrade	1.8 m lintel	11.42	1.5	-	-	0.5	No
G1470120	OnGrade	1.8 m lintel	11.38	1.5	-	-	0.5	No
G1470110	Sag	1.8 m lintel	11.2	1.5	5	0.2	0.5	No
G147090	Sag	1.8 m lintel	11.29	1.5	5	0.2	0.5	No
G147080	OnGrade	4.2 m lintel	10.95	1.5	-	-	0.5	No
G147070	Sag	1.8 m lintel	11.03	1.5	5	0.2	0.5	No
G147060J	Sag	RM. 7 Grated Pit	9.8	1.5	5	0.2	0.5	Yes
G147050J	Sag	4.2 m lintel	8.45	1.5	5	0.2	0.5	No
G147040	Sag	1.8 m lintel	6.8	1.5	5	0.2	0.5	No
G147030	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \end{aligned}$	6.67	1.5	5	0.2	0.5	No
G147020	Sag	$\begin{aligned} & 0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \\ & \text { Grated pit } \\ & \hline \end{aligned}$	6.55	1.5	5	0.2	0.5	No
G147010	Sag	2.4 m lintel	6.31	1.5	5	0.2	0.5	No
G147000	Node	-	6		-	-	-	-
G110170	OnGrade	Large	12.86	1.5	-	-	0	No
G110160	OnGrade	1.8 m lintel	11.1	1.5	-	-	0.5	No
G110150J	Sag	RM. 7 Grated Pit	10.4	1.5	5	0.2	0.5	Yes
G110140	OnGrade	4.2 m lintel	10.3	1.5	-	-	0.5	No
G110130	Sag	1.8 m lintel	10.15	1.5	5	0.2	0.5	No
G110110	OnGrade	1.2 m lintel	10	1.5	-	-	0.5	No
G110100	Sag	1.8 m lintel	10.23	1.5	5	0.2	0.5	No
G11090J	Sag	RM. 7 Grated Pit	10.4	1.5	6	0.2	0.5	Yes
G11080J	Sag	RM. 7 Grated Pit	10.25	1.5	5	0.2	0.5	Yes
G11070J	Sag	RM. 7 Grated Pit	10.4	1.5	5	0.2	0.5	Yes
G11040J	Sag	RM. 7 Grated Pit	10.12	1.5	5	0.2	0.5	Yes
G11030J	Sag	RM. 7 Grated Pit	10.3	1.5	5	0.2	0.5	Yes
G11020J	Sag	RM. 7 Grated Pit	9.43	1.5	5	0.2	0.5	Yes
G11010	Sag	2.4 m lintel	9.2	1.5	5	0.2	0.5	No
G11000	Node	-	8.15	-	-	-	-	-
Q2410100J	OnGrade	RM. 7 Grated Pit	11.75	1.5	-	-	0.5	Yes
Q241090	OnGrade	3.0 m lintel	11.08	1.5	-	-	0.5	No
Q241080J	OnGrade	RM. 7 Grated Pit	11.36	1.5	-	-	0.5	Yes
Q241070	OnGrade	0.9 m lintel	11.19	1.5	-	-	0.5	No
Q241060	Sag	1.8 m lintel	10.1	1.5	5	0.2	0.5	No
Q241050	Sag	4.2 m lintel	10.08	1.5	5	0.2	0.5	No
Q241040J	OnGrade	RM. 7 Grated Pit	10.43	1.5	-	-	0.5	Yes
Q241030J	OnGrade	RM. 7 Grated Pit	10.45	1.5	-	-	0.5	Yes
Q241020	Sag	1.8 m lintel	9.91	1.5	5	0.2	0.5	No
Q241010J	OnGrade	RM. 7 Grated Pit	9.95	1.5	-	-	0.5	Yes
Q241000	Node	- -	9.9		-	-	-	-

Table A5: Limited DRAINS Stormwater Pipe Data

Pipe Name	From Pit	To Pit	Length (m)	U/S IL	DIS IL	Slope (\%)	Nom. Diameter (mm)
Pipe 279	Q1800380	Q1800370	24.08	16.62	16.29	1.37	900
Pipe 280	Q1800370	Q1800360	171.21	16.29	14.51	1.04	900
Pipe 284	Q1800360	Q1800340J	12.13	14.51	14.24	2.23	1050
Pipe 708	Q1800340J	Q1800330J	5.93	14.24	14.10	2.36	1050
Pipe 288	Q1800330J	Q1800320	85.82	14.10	13.20	1.05	1050
Pipe 728	Q1800320	Q1800310J	6.42	13.11	13.06	0.78	1200
Pipe 293	Q1800310J	Q1800300	11.72	13.06	12.98	0.68	1200
Pipe 292	Q1800300	Q1800290	65.27	12.98	12.52	0.70	1200
Pipe 290	Q1800290	Q1800280J	4.85	12.52	12.49	0.62	1200
Pipe 748	Q1800280J	Q1800275J	9.15	12.49	12.44	0.55	1200
Pipe 749	Q1800275J	Q1800270	3.76	12.44	12.42	0.53	1200
Pipe 318	Q1800270	Q1800260	57.00	12.42	12.10	0.56	1350
Pipe 699	Q1800260	Q1800250J	8.58	12.10	12.05	0.58	1350
Pipe 298	Q1800250J	Q1800230	8.82	12.05	11.99	0.68	1350
Pipe 299	Q1800230	Q1800220	99.65	11.99	11.55	0.44	1350
Pipe 535	Q1800220	Q1800210J	5.04	11.55	11.53	0.40	1350
Pipe 403	Q1800210J	Q1800200	14.11	11.53	11.47	0.43	1350
Pipe 300	Q1800200	Q1800180	96.35	11.47	11.13	0.35	1350
Pipe 536	Q1800180	Q1800170	19.81	11.13	11.04	0.45	1350
Pipe 302	Q1800170	Q1800160	45.32	11.04	10.86	0.40	1350
Pipe 422	Q1800160	Q1800150	8.36	10.86	10.81	0.60	1350
Pipe 303	Q1800150	Q1800140J	83.97	10.81	10.14	0.80	1350
Pipe 698	Q1800140J	Q1800130J	6.90	10.14	10.08	0.87	1350
Pipe 304	Q1800130J	Q1800120	80.46	10.08	9.45	0.78	1350
Pipe 543	Q1800120	Q1800110J	8.92	9.45	9.38	0.78	1350
Pipe 297	Q1800110J	Q1800100	78.99	9.38	8.75	0.80	1350
Pipe 695	Q1800100	Q180090J	17.95	8.65	8.55	0.56	1350
Pipe 309	Q180090J	Q180080J	8.38	8.55	8.46	1.07	1500
Pipe 310	Q180080J	Q180060J	78.92	8.46	7.99	0.60	1500
Pipe 390	Q180060J	Q180050J	13.76	7.66	7.49	1.24	1500
Pipe 350	Q180050J	Q180040J	29.74	7.49	7.25	0.81	1800
Pipe 345	Q180040J	Q180030J	116.28	7.25	6.32	0.80	1800
Pipe 346	Q180030J	Q180020J	22.04	6.32	6.14	0.82	1800
Pipe 347	Q180020J	Q180010J	10.49	6.14	6.05	0.86	1800
Pipe 348	Q180010J	Q180000	22.51	6.05	5.84	0.93	1800
Pipe 266	Q19010	Q1070	7.57	10.99	10.90	1.19	900
Pipe 324	Q1070	Q1050J	83.17	10.15	9.86	0.35	1800
Pipe 325	Q1050J	Q2410110	71.24	9.86	9.62	0.34	1800
Pipe 351	Q2410110	Q1040	97.22	9.21	7.77	1.48	1800
Pipe 329	Q2410110	Q2410100J	21.60	9.24	9.05	0.88	1800
Pipe 354	Q1040	Q1030	90.39	7.77	7.39	0.42	1800
Pipe 357	Q1030	Q1020J	131.00	7.74	6.50	0.95	1800
Pipe 359	Q1020J	Q1010	31.49	6.50	6.26	0.76	1800
Pipe 360	Q1010	Q1000	28.42	6.26	6.15	0.39	1800
Pipe 267	Q30120	Q30111J	4.44	12.01	11.95	1.35	900
Pipe 716	Q30111J	Q30110	9.08	11.70	11.63	0.77	900
Pipe 268	Q30110	Q30100	68.32	11.63	11.17	0.67	900
Pipe 751	Q30100	Q3090	5.98	11.17	11.10	1.17	900
Pipe 443	Q3090	Q3080	7.02	11.10	11.06	0.57	900
Pipe 269	Q3080	Q3070	68.73	11.06	10.85	0.31	900
Pipe 750	Q3070	Q3071	8.72	10.85	10.60	2.87	900
Pipe 270	Q3071	Q3060	6.55	10.60	10.50	1.53	900
Pipe 271	Q3060	Q3050	46.34	10.63	10.39	0.52	900
Pipe 272	Q3050	Q3040	50.25	10.39	9.96	0.86	900
Pipe 273	Q3040	Q3030	19.01	9.96	9.91	0.26	900
Pipe 274	Q3030	Q3020	44.09	9.91	9.73	0.41	900
Pipe 275	Q3020	Q3010	53.85	9.73	8.36	2.54	900
Pipe 276	Q3010	Q2030J	7.16	8.36	8.30	0.84	900
Pipe 358	Q2030J	Q2020	47.84	6.96	6.60	0.75	1800
Pipe 361	Q2020	Q2010J	39.89	6.60	6.35	0.63	1800
Pipe 362	Q2010J	Q2000	28.95	6.35	6.15	0.69	1800
Pipe 265	Q24030J	Q24020	104.52	16.48	14.05	2.32	900
Pipe 541	Q24020	Q24010J	15.31	14.05	13.90	0.98	900
Pipe 301	Q24010J	Q48010	101.36	13.05	12.39	0.65	1350
Pipe 405	Q48010	Q10120J	12.65	12.39	12.23	1.26	1350
Pipe 320	Q10120J	Q10110J	105.12	11.56	11.10	0.44	1800
Pipe 712	Q10110J	Q10100J	11.33	11.10	11.05	0.44	1800
Pipe 319	Q10100J	Q1090	102.08	11.05	10.60	0.44	1800
Pipe 322	Q1090	Q1080	12.65	10.60	10.45	1.19	1800
Pipe 752	Q1080	Q1075	22.64	10.45	10.30	0.66	1800

Pipe Name	From Pit	To Pit	Length (m)	U/S IL	DIS IL	Slope (\%)	Nom. Diameter (mm)
Pipe 323	Q1075	Q1070	51.24	10.30	9.95	0.68	1800
Pipe 815	Q2070	Q2060J	2.15	9.79	9.77	1.16	1800
Pipe 352	Q2060J	Q2055	25.31	9.77	9.50	1.05	1800
Pipe 353	Q2055	Q2050	82.56	8.60	7.88	0.87	1800
Pipe 355	Q2050	Q2040	74.47	7.88	7.36	0.70	1800
Pipe 356	Q2040	Q2030J	83.33	7.55	6.96	0.71	1800
Pipe889	N2570	Q10670J	5.00	30.01	29.92	1.70	900
Pipe 262	Q10670J	Q10660J	28.74	29.92	29.43	1.70	900
Pipe 261	Q10660J	Q10650J	25.05	29.43	29.00	1.72	900
Pipe 283	Q10650J	Q10640	73.67	29.00	27.75	1.70	1050
Pipe 282	Q10640	Q10630	9.90	27.75	27.57	1.82	1050
Pipe 281	Q10630	Q10620J	74.79	27.57	25.40	2.90	1050
Pipe 295	Q10620J	Q10610J	8.70	26.59	26.41	2.07	1350
Pipe 296	Q10610J	Q10600J	71.12	26.41	25.55	1.21	1350
Pipe 294	Q10600J	Q10580	19.99	25.55	25.19	1.80	1350
Pipe 308	Q10580	Q10570J	70.66	25.19	24.65	0.76	1500
Pipe 307	Q10570J	Q10560J	36.75	24.65	24.12	1.44	1350
Pipe 305	Q10560J	Q10550J	36.47	24.12	23.89	0.63	1350
Pipe 738	Q10550J	Q10540J	4.79	23.89	23.84	1.04	1350
Pipe 306	Q10540J	Q10530	113.04	23.84	22.63	1.07	1350
Pipe 531	Q10530	Q10520	3.48	22.58	22.49	2.59	1350
Pipe 532	Q10520	Q10510J	65.23	21.94	21.38	0.86	1800
Pipe 605	Q10510J	Q10500J	30.58	21.38	21.20	0.59	1800
Pipe 680	Q10500J	Q10490J	18.98	21.20	21.10	0.53	1800
Pipe 681	Q10490J	Q10480J	14.33	21.10	21.03	0.49	1800
Pipe 604	Q10480J	Q10470J	13.31	21.03	20.93	0.75	1800
Pipe 606	Q10470J	Q10460J	12.36	20.97	20.92	0.40	1800
Pipe 676	Q10460J	Q10450J	14.12	20.60	20.53	0.50	1800
Pipe 677	Q10450J	Q10440J	15.37	20.53	20.45	0.52	1800
Pipe 336	Q10440J	Q101010	43.70	20.45	20.20	0.57	1800
Pipe 475	Q101010	Q10420	21.64	20.11	19.96	0.69	1800
Pipe 335	Q10420	Q10410J	78.50	19.91	19.35	0.71	1800
Pipe 330	Q10410J	Q10400J	19.38	19.27	19.13	0.72	1800
Pipe 331	Q10400J	Q10390J	73.98	19.05	18.52	0.72	1800
Pipe 332	Q10390J	Q95010	28.17	18.45	18.26	0.67	1800
Pipe 469	Q95010	Q10380J	8.64	18.26	18.20	0.69	1800
Pipe 333	Q10380J	Q10370	64.74	18.20	17.78	0.65	1800
Pipe 471	Q10370	Q10360J	16.43	17.78	17.67	0.67	1800
Pipe 334	Q10360J	Q10350J	88.06	17.67	17.06	0.69	1800
Pipe 337	Q10350J	Q10340	83.83	17.06	16.82	0.29	1800
Pipe 482	Q10340	Q10330	12.14	16.82	16.78	0.33	1800
Pipe 338	Q10330	Q10320	69.99	16.78	16.55	0.33	1800
Pipe 483	Q10320	Q10310	15.10	16.55	16.50	0.33	1800
Pipe 484	Q10310	Q10300	62.90	16.50	16.30	0.32	1800
Pipe 339	Q10300	Q10290	130.63	16.30	15.50	0.61	1800
Pipe 486	Q10290	Q10280	20.31	15.50	15.33	0.84	1800
Pipe 340	Q10280	Q10270J	71.90	15.33	14.90	0.60	1800
Pipe 488	Q10270J	Q10260J	8.72	14.90	14.85	0.57	1800
Pipe 343	Q10260J	Q10250	53.99	14.85	14.53	0.59	1800
Pipe 342	Q10250	Q10240J	47.56	14.53	14.25	0.59	1800
Pipe 713	Q10240J	Q10235J	5.56	14.25	14.22	0.54	1800
Pipe 494	Q10235J	Q10230J	12.98	14.22	14.15	0.54	1800
Pipe 341	Q10230J	Q10220J	41.38	14.15	13.90	0.60	1800
Pipe 315	Q10220J	Q10210J	51.81	13.90	13.60	0.58	1800
Pipe 707	Q10210J	Q10200J	10.14	13.60	13.54	0.59	1800
Pipe 314	Q10200J	Q10190	68.63	13.54	13.11	0.63	1800
Pipe 398	Q10190	Q10180	6.29	13.11	13.03	1.27	1800
Pipe 316	Q10180	Q10170	97.28	13.03	12.45	0.60	1800
Pipe 702	Q10170	Q10165J	18.07	12.45	12.35	0.55	1800
Pipe 704	Q10165J	Q10161	39.59	12.35	12.15	0.51	1800
Pipe 703	Q10161	Q10160J	31.51	12.15	11.97	0.57	1800
Pipe 317	Q10160J	Q10150J	7.94	11.97	11.93	0.50	1800
Pipe 321	Q10150J	Q10140	38.83	11.93	11.74	0.49	1800
Pipe 540	Q10140	Q10120J	35.61	11.74	11.56	0.51	1800
Pipe891	N2571	Q123070J	5.00	28.40	28.30	2.00	900
Pipe 263	Q123070J	Q123050J	70.79	28.30	26.90	1.98	900
Pipe 264	Q123050J	Q123040J	20.24	26.90	26.50	1.98	900
Pipe 289	Q123040J	Q123030J	92.99	26.20	24.20	2.15	1200
Pipe 528	Q123030J	Q123020J	18.67	24.20	24.10	0.54	1200
Pipe 530	Q123020J	Q123010	6.99	24.10	24.07	0.43	1200
Pipe 291	Q123010	Q10520	38.14	23.93	22.63	3.41	1200
Pipe893	N2572	Q101040	5.00	21.57	21.51	1.10	1050
Pipe 603	Q101040	Q101030	14.10	21.51	21.36	1.06	1050
Pipe 602	Q101030	Q101020	46.33	21.36	21.22	0.30	1050
Pipe 601	Q101020	Q101010	21.33	21.22	21.10	0.56	1050
Pipe895	N2574	Q150010	5.00	27.15	27.07	1.50	900
Pipe 550	Q150010	Q10610J	16.54	27.07	26.86	1.27	900
Pipe897	N2575	Q82030	5.00	21.33	21.28	1.00	900
Pipe 600	Q82030	Q82020	25.48	21.28	21.04	0.94	900

Pipe Name	From Pit	To Pit	Length (m)	UIS IL	DIS IL	Slope (\%)	Nom. Diameter (mm)
Pipe 278	Q82020	Q82010	86.22	21.04	19.45	1.84	900
Pipe 277	Q82010	Q10330	94.87	19.45	17.30	2.27	900
Pipe899	N2576	Q64042J	5.00	18.13	18.05	1.60	1050
Pipe 259	Q64042J	Q64040	99.70	18.05	16.45	1.60	1050
Pipe 730	Q64040	Q64030J	6.84	16.45	16.33	1.75	1050
Pipe 287	Q64030J	Q64020J	9.50	16.33	16.27	0.63	1050
Pipe 286	Q64020J	Q64010	97.98	16.27	15.62	0.66	1050
Pipe 285	Q64010	Q10260J	20.15	15.62	14.82	3.97	1050
Pipe901	N2577	Q24020	5.00	14.10	14.05	1.00	900
Pipe903	N2579	Q30111J	5.00	11.75	11.70	1.00	900
Pipe905	N2580	Q1800370	5.00	16.34	16.29	1.00	900
Q260080P	Q260080	Q260070J	16.46	12.50	12.23	1.64	1200
Q260070JP	Q260070J	Q260060J	100.24	12.23	10.57	1.66	1200
Q260060JP	Q260060J	Q260050J	8.65	10.57	10.43	1.62	1200
Q260050JP	Q260050J	Q264010J	83.17	10.43	9.60	1.00	1200
Q264010JP	Q264010J	Q263010	31.40	9.60	9.28	1.02	1350
Q263010P	Q263010	Q260020J	52.08	9.28	8.85	0.83	1350
Q260020JP	Q260020J	Q260010J	65.89	8.85	8.30	0.83	1350
Q260010JP	Q260010J	Q260000	36.23	8.30	8.00	0.83	1350
N1050p	N1050	N1040	21.23	4.67	4.54	0.61	900
N1040p	N1040	N1030	89.84	4.54	4.01	0.59	900
N1030p	N1030	N1000	125.79	4.01	1.10	2.31	900
N5040p	N5040	N5030J	6.47	4.90	4.89	0.15	900
N5030.jp	N5030J	N5020	18.47	4.89	4.86	0.16	900
N5020p	N5020	N5010	120.35	4.86	4.69	0.14	900
N5010p	N5010	N5000	114.20	4.69	3.90	0.69	900
G1470180P	G1470180	G1470170	31.95	9.80	9.68	0.38	900
G1470170P	G1470170	G1470160	30.98	9.68	9.45	0.74	900
G1470160P	G1470160	G1470150	27.59	9.45	9.38	0.25	900
G1470150P	G1470150	G1470140	49.76	9.38	9.26	0.24	900
G1470140P	G1470140	G1470130	24.61	9.26	9.10	0.65	900
G1470130P	G1470130	G1470125	27.31	9.10	9.00	0.37	900
G1470125P	G1470125	G1470120	28.02	9.00	8.88	0.43	900
G1470120P	G1470120	G1470110	13.72	8.88	8.83	0.36	900
G1470110P	G1470110	G147090	75.81	8.83	8.55	0.37	900
G147090P	G147090	G147080	119.95	8.55	8.10	0.38	900
G147080P	G147080	G147070	64.09	8.10	7.85	0.39	900
G147070P	G147070	G147060J	135.81	7.85	6.14	1.26	900
G147060JP	G147060J	G147050J	25.24	6.14	5.82	1.27	1200
G147050JP	G147050J	G147040	46.27	5.82	5.20	1.34	1200
G147040P	G147040	G147030	18.50	5.20	4.97	1.24	1200
G147030P	G147030	G147020	28.37	4.97	4.61	1.27	1200
G147020p	G147020	G147010	23.44	4.61	4.32	1.24	1200
G147010p	G147010	G147000	27.48	4.32	4.00	1.16	1200
G110170P	G110170	G110160	84.77	11.56	9.29	2.68	900
G110160P	G110160	G110150J	91.55	8.84	8.44	0.44	1350
G110150JP	G110150J	G110140	23.13	8.44	8.34	0.43	1350
G110140P	G110140	G110130	42.06	8.34	8.15	0.45	1350
G110130P	G110130	G110110	18.04	8.15	8.08	0.39	1350
G110110P	G110110	G110100	63.73	8.08	7.83	0.39	1350
G110100P	G110100	G11090J	85.86	7.53	7.32	0.24	1500
G11090JP	G11090J	G11080J	38.58	7.32	7.22	0.26	1800
G11080JP	G11080J	G11070J	62.44	7.22	7.06	0.26	1800
G11070JP	G11070J	G11040J	54.61	7.06	6.92	0.26	1800
G11040JP	G11040J	G11030J	73.05	6.92	6.73	0.26	1800
G11030JP	G11030J	G11020J	100.93	6.73	6.40	0.33	1800
G11020JP	G11020J	G11010	2.90	6.40	6.27	4.48	1800
G11010P	G11010	G11000	11.74	6.27	5.75	4.43	1800
Pipe 328	Q2410100J	Q241090	82.59	9.05	8.62	0.52	1800
Pipe 546	Q241090	Q241080J	8.03	8.62	8.58	0.50	1800
Pipe 327	Q241080J	Q241070	13.96	8.58	8.50	0.57	1800
Pipe 326	Q241070	Q241060	188.49	8.50	7.63	0.46	1800
Pipe 548	Q241060	Q241050	4.30	7.63	7.59	0.93	1800
Pipe 313	Q241050	Q241040J	12.05	7.59	7.49	0.83	1800
Pipe 349	Q241040J	Q241030J	40.02	7.49	7.13	0.90	1800
Pipe 363	Q241030J	Q241020	38.94	7.15	6.82	0.85	1800
Pipe 719	Q241020	Q241010J	6.57	6.82	6.76	0.91	1800
Pipe 344	Q241010J	Q241000	114.63	6.76	5.84	0.80	1800

Table A6: Limited DRAINS Subcatchment Data

Name	Pit/Node	SubCatchment Area (ha)	\% Paved Area	\% Grassed Area	Paved Time	Grassed Time
Cat189	Q1800360	5.73	70.0	30.0	9.2	13.5
Cat159	Q1800290	5.62	61.6	38.4	6.5	11.9
Cat151	Q1800200	2.58	65.0	35.0	7.0	13.9
Cat152	Q1800160	13.98	64.6	35.4	16.0	19.7
Cat176	Q1800100	8.62	60.6	39.4	9.3	13.6
Cat165	Q180020J	0.65	52.8	47.2	2.5	5.0
Cat136	Q1050J	7.32	62.3	37.7	11.5	17.1
Cat122	Q30100	1.84	60.6	39.4	5.2	10.5
Cat116	Q3071	1.52	61.8	38.2	3.3	6.5
Cat118	Q3010	5.70	61.7	38.3	12.5	17.5
Cat114	Q2020	2.25	60.9	39.1	6.8	13.7
Cat141	Q1080	4.40	60.7	39.3	9.8	11.6
Cat84	N2570	10.01	57.6	42.4	19.0	24.0
Cat76	Q10630	2.88	63.5	36.5	8.9	14.8
Cat62	Q10580	3.85	58.2	41.8	7.4	10.8
Cat59	Q10540J	7.90	58.7	41.3	9.5	14.4
Cat56	Q10460J	11.58	64.6	35.4	13.5	17.0
Cat30	Q10420	17.08	53.6	46.4	12.0	18.4
Cat28	Q95010	12.72	60.6	39.4	6.6	13.0
Cat31	Q10350J	8.49	57.8	42.2	11.6	16.2
Cat27	Q10340	8.52	30.0	70.0	7.8	12.6
Cat187	Q10250	15.41	49.7	50.3	16.4	22.5
Cat153	Q10190	11.60	61.2	38.8	11.8	17.1
Cat37	N2571	11.02	57.3	42.7	18.3	22.6
Cat54	Q123010	5.24	57.2	42.8	5.4	10.6
Cat24	N2572	7.79	62.5	37.5	12.0	17.7
Cat71	N2574	5.42	62.8	37.2	21.4	24.2
Cat13	N2575	13.18	58.3	41.7	12.6	19.0
Cat106	N2576	11.11	61.0	39.0	19.3	21.0
Cat139	N2577	15.74	66.5	33.5	13.8	16.9
Cat124	N2579	2.73	61.1	38.9	6.7	10.9
Cat203	N2580	21.48	69.9	30.1	30.1	33.9
Cat215	Q260080	12.64	60.6	39.4	10.0	24.5
Cat216	Q260060J	1.90	61.6	38.4	5.5	13.0
Cat217	Q263010	1.89	63.4	36.5	5.5	13.0
Cat218	Q260020J	0.27	62.1	35.3	3.0	13.0
Cat228	N1050	0.62	59.3	40.7	3.5	15.5
Cat230	N1030	0.96	63.6	36.4	5.0	17.0
Cat226	N5040	6.27	57.2	36.5	10.0	22.0
Cat227	N5020	0.34	90.0	10.0	10.0	13.0
Cat229	N5010	0.10	100.0	0.0	5.0	0.0
Cat220	G1470180	4.04	50.3	49.9	4.0	16.5
Cat232	G1470140	4.08	57.0	43.1	10.0	24.0
Cat222	G147080	4.63	63.1	36.9	10.0	23.0
Cat224	G147050J	8.84	35.7	64.2	10.0	28.0
Cat225	G147010	2.75	82.9	16.9	3.0	8.0
Cat219	G110170	16.51	79.2	20.8	10.0	22.5
Cat231	G110140	11.31	50.7	49.2	10.0	25.0
Cat221	G11090J	8.69	60.1	39.6	10.0	18.0
Cat223	G11040J	2.28	74.6	27.7	5.5	17.5
Cat172	Q241050	4.55	62.1	37.9	10.4	15.4
Cat169	Q241020	7.00	61.3	38.7	7.4	12.4

Table A7: XP-RAFTS Model Subcatchment Parameters

Catchment Name	Total Area [ha]	Rainfa	Loss	Surface Roughness	Percentage Impervious [\%]	Catchment Slope [\%]
		Initial Loss (mm	Continuing Loss ($\mathrm{mm} / \mathrm{hr}$)			
cat189 [Subcatch 1]	1.72	10	6	0.025	0	2.3
cat189 [Subcatch 2]	4.01	0	0	0.015	100	2.3
cat159 [Subcatch 1]	2.16	10	6	0.025	0	0.5
cat159 [Subcatch 2]	3.46	0	0	0.015	100	0.5
cat151 [Subcatch 1]	0.9	10	6	0.025	0	0.9
cat151 [Subcatch 2]	1.68	0	0	0.015	100	0.9
cat71 [Subcatch 1]	2.01	10	6	0.025	0	0.8
cat71 [Subcatch 2]	3.4	0	0	0.015	100	0.8
cat84 [Subcatch 1]	4.24	10	6	0.025	0	1.8
cat84 [Subcatch 2]	5.77	0	0	0.015	100	1.8
cat76 [Subcatch 1]	1.05	10	6	0.025	0	2.5
cat76 [Subcatch 2]	1.83	0	0	0.015	100	2.5
cat62 [Subcatch 1]	1.61	10	6	0.025	0	3.3
cat62 [Subcatch 2]	2.24	0	0	0.015	100	3.3
cat59 [Subcatch 1]	3.26	10	6	0.025	0	1.0
cat59 [Subcatch 2]	4.64	0	0	0.015	100	1.0
cat37 [Subcatch 1]	4.7	10	6	0.025	0	2.6
cat37 [Subcatch 2]	6.31	0	0	0.015	100	2.6
cat54 [Subcatch 1]	2.24	10	6	0.025	0	0.4
cat54 [Subcatch 2]	3	0	0	0.015	100	0.4
cat56 [Subcatch 1]	4.1	10	6	0.025	0	0.5
cat56 [Subcatch 2]	7.48	0	0	0.015	100	0.5
cat24 [Subcatch 1]	2.92	10	6	0.025	0	1.5
cat24 [Subcatch 2]	4.87	0	0	0.015	100	1.5
cat30 [Subcatch 1]	7.92	10	6	0.025	0	0.7
cat30 [Subcatch 2]	9.15	0	0	0.015	100	0.7
cat28 [Subcatch 1]	5.01	10	6	0.025	0	0.7
cat28 [Subcatch 2]	7.71	0	0	0.015	100	0.7
cat31 [Subcatch 1]	3.58	10	6	0.04	0	0.3
cat31 [Subcatch 2]	4.91	0	0	0.015	100	0.3
cat27 [Subcatch 1]	5.96	10	6	0.025	0	0.6
cat27 [Subcatch 2]	2.56	0	0	0.015	100	0.6
cat13 [Subcatch 1]	5.5	10	6	0.025	0	0.5
cat13 [Subcatch 2]	7.68	0	0	0.015	100	0.5
cat203 [Subcatch 1]	6.47	10	6	0.025	0	0.5
cat203 [Subcatch 2]	15.01	0	0	0.015	100	0.5
cat187 [Subcatch 1]	7.75	10	6	0.025	0	0.6
cat187 [Subcatch 2]	7.66	0	0	0.015	100	0.6
cat106 [Subcatch 1]	4.33	10	6	0.025	0	0.7
cat106 [Subcatch 2]	6.77	0	0	0.015	100	0.7
cat153 [Subcatch 1]	4.5	10	6	0.025	0	1.3
cat153 [Subcatch 2]	7.1	0	0	0.015	100	1.3
cat139 [Subcatch 1]	5.27	10	6	0.025	0	2.6
cat139 [Subcatch 2]	10.47	0	0	0.015	100	2.6
cat141 [Subcatch 1]	1.73	10	6	0.025	0	0.6
cat141 [Subcatch 2]	2.67	0	0	0.015	100	0.6
cat152 [Subcatch 1]	4.95	10	6	0.025	0	0.7
cat152 [Subcatch 2]	9.03	0	0	0.015	100	0.7
cat176 [Subcatch 1]	3.4	10	6	0.025	0	2.3
cat176 [Subcatch 2]	5.23	0	0	0.015	100	2.3
cat136 [Subcatch 1]	2.76	10	6	0.025	0	2.1
cat136 [Subcatch 2]	4.56	0	0	0.015	100	2.1
cat172 [Subcatch 1]	1.73	10	6	0.025	0	2.7
cat172 [Subcatch 2]	2.83	0	0	0.015	100	2.7
cat124 [Subcatch 1]	1.06	10	6	0.025	0	1.9
cat124 [Subcatch 2]	1.67	0	0	0.015	100	1.9
cat122 [Subcatch 1]	0.72	10	6	0.025	0	1.5
cat122 [Subcatch 2]	1.11	0	0	0.015	100	1.5
cat118 [Subcatch 1]	2.18	10	6	0.025	0	0.8
cat118 [Subcatch 2]	3.52	0	0	0.015	100	0.8
cat116 [Subcatch 1]	0.58	10	6	0.025	0	1.3
cat116 [Subcatch 2]	0.94	0	0	0.015	100	1.3
cat114 [Subcatch 1]	0.88	10	6	0.025	0	1.9
cat114 [Subcatch 2]	1.37	0	0	0.015	100	1.9
cat169 [Subcatch 1]	2.71	10	6	0.025	0	1.3
cat169 [Subcatch 2]	4.29	0	0	0.015	100	1.3
cat165 [Subcatch 1]	0.31	10	6	0.025	0	2.2
cat165 [Subcatch 2]	0.34	0	0	0.015	100	2.2

Appendix B Hydrological / Stormwater Model Flows

This appendix contains:

- Peak overflows from the stormwater pipe network (from the DRAINS model into the TUFLOW model)
- Peak catchment outflows from the DRAINS model

Peak Overflows from Stormwater Pipe Network for Selected ARI Events and Storm Durations

	5 Year ARI Event											20 Year ARI Event										
Storm Duration (mins)	5	15	20	30	45	60	90	120	180	270	360	5	15	20	30	45	60	90	120	180	270	360
Overflow node																						
OF802	0.10	0.18	0.17	0.19	0.10	0.16	0.21	0.16	0.00	0.00	0.00	0.24	0.34	0.32	0.35	0.23	0.33	0.36	0.33	0.10	0.06	0.00
OF540	0.00	0.10	0.43	0.83	0.83	0.83	0.83	0.83	0.66	0.60	0.20	0.00	0.72	0.83	0.84	0.84	0.84	0.84	0.84	0.83	0.83	0.00
OF541	0.00	0.00	0.00	0.06	0.28	0.37	0.35	0.21	0.00	0.00	0.00	0.00	0.00	0.32	1.01	1.26	1.39	1.38	1.23	0.71	0.62	0.00
OF518	0.60	1.37	1.59	1.56	1.38	1.44	1.55	1.62	1.12	0.97	0.76	0.89	1.93	2.12	2.09	1.86	1.88	1.96	2.06	1.45	1.31	0.30
OF524	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF526	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF229	0.79	1.50	1.52	1.56	1.32	1.47	1.55	1.50	1.05	0.97	0.75	1.16	1.91	1.95	1.99	1.72	1.90	1.95	1.94	1.33	1.22	0.34
OF225	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF222	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF215	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00
OF218	0.23	0.40	0.41	0.42	0.32	0.36	0.42	0.40	0.20	0.15	0.06	0.39	0.61	0.62	0.63	0.50	0.57	0.61	0.62	0.33	0.28	0.03
OF391	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF392	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF398	0.80	2.02	2.29	2.27	2.13	2.27	2.23	2.26	1.74	1.50	1.16	1.23	2.82	3.17	3.13	2.94	3.15	3.12	3.12	2.51	2.19	0.69
OF185	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF180	0.80	1.56	1.72	1.68	1.44	1.48	1.62	1.72	1.06	0.92	0.59	1.22	2.20	2.41	2.36	2.05	2.11	2.21	2.36	1.50	1.33	0.43
OF153	0.13	0.16	0.14	0.16	0.11	0.15	0.17	0.16	0.06	0.06	0.03	0.19	0.24	0.22	0.22	0.18	0.21	0.23	0.22	0.10	0.08	0.05
OF386	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF383	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF358	0.46	1.13	1.29	1.24	1.09	1.09	1.17	1.24	0.81	0.67	0.46	0.75	1.61	1.81	1.75	1.56	1.58	1.69	1.78	1.21	1.04	0.27
OF364	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF306	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF337	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF338	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF656	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF333	0.23	0.31	0.29	0.32	0.21	0.30	0.34	0.29	0.12	0.09	0.02	0.38	0.47	0.44	0.49	0.35	0.45	0.49	0.45	0.21	0.18	0.03
OF334	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF331	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF318	0.27	0.32	0.29	0.33	0.22	0.30	0.33	0.30	0.11	0.09	0.03	0.41	0.48	0.44	0.46	0.36	0.43	0.47	0.43	0.19	0.16	0.07
OF317	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF321	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF322	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF323	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF324	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF325	0.25	0.77	0.89	0.86	0.75	0.77	0.80	0.86	0.56	0.45	0.29	0.46	1.14	1.28	1.24	1.11	1.15	1.20	1.25	0.87	0.74	0.13
OF310	0.25	0.39	0.40	0.41	0.32	0.37	0.42	0.40	0.23	0.19	0.11	0.39	0.57	0.58	0.59	0.48	0.55	0.59	0.59	0.34	0.30	0.08
OF296	0.00	0.51	0.82	0.73	0.46	0.56	0.54	0.68	0.00	0.00	0.00	0.00	1.52	1.90	1.79	1.45	1.61	1.61	1.69	0.78	0.42	0.00
OF300	0.00	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.51	0.20	0.00	0.03	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.00
OF388	0.90	1.21	1.21	1.29	1.20	1.20	1.20	1.20	1.20	0.83	0.71	1.20	1.21	1.20	1.21	1.20	1.20	1.20	1.20	1.20	0.83	0.46
OF387	0.25	0.66	0.78	0.75	0.63	0.63	0.70	0.78	0.39	0.33	0.16	0.47	1.00	1.16	1.11	0.97	0.96	1.00	1.12	0.62	0.53	0.09
OF768	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF329	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF41	0.00	0.00	0.21	0.24	0.21	0.32	0.35	0.29	0.00	0.00	0.00	0.00	0.46	0.75	0.78	0.75	0.89	0.96	0.89	0.49	0.34	0.00
OF62	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF63	0.09	0.34	0.38	0.37	0.28	0.29	0.35	0.37	0.16	0.10	0.00	0.23	0.55	0.60	0.59	0.48	0.50	0.55	0.59	0.31	0.25	0.00
OF672	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF81	0.30	0.60	0.62	0.65	0.49	0.70	0.84	0.77	0.30	0.25	0.10	0.53	0.96	1.20	1.23	1.01	1.26	1.45	1.37	0.77	0.52	0.07
OF416	0.66	1.34	1.51	1.46	1.25	1.29	1.41	1.50	0.93	0.79	0.51	1.03	1.91	2.13	2.07	1.81	1.86	1.95	2.09	1.34	1.19	0.35
OF414	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF722	0.78	1.91	2.43	2.35	2.15	2.26	2.26	2.37	1.55	1.25	0.91	1.19	2.96	3.25	3.16	2.91	3.03	3.05	3.12	2.43	2.17	0.58
OF697	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF698	1.24	2.68	3.03	2.93	2.62	2.68	2.86	3.03	2.14	1.83	1.43	1.86	3.74	4.18	4.05	3.67	3.82	4.06	4.27	3.10	2.70	0.90

	100 Year ARI Event											PMF Event										
Storm Duration (mins)	5	15	20	30	45	60	90	120	180	270	360	15	30	45	60	90	120	150	180	240	300	360
Overflow node																						
OF802	0.42	0.50	0.47	0.49	0.37	0.48	0.50	0.47	0.19	0.14	0.02	3.73	2.98	2.57	2.24	1.68	1.45	1.21	1.06	0.84	0.70	0.57
OF540	0.00	0.83	0.84	0.86	0.87	0.87	0.87	0.86	0.85	0.84	0.83	1.04	1.05	1.06	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
OF541	0.00	0.75	1.33	2.23	2.44	2.55	2.49	2.29	1.59	1.42	0.81	16.64	23.38	24.65	23.05	18.54	16.07	13.32	11.59	9.19	7.77	6.26
OF518	1.49	2.51	2.63	2.51	2.31	2.30	2.35	2.48	1.72	1.57	1.22	12.78	10.21	8.96	7.97	6.34	5.51	4.80	4.35	3.69	3.30	2.91
OF524	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF526	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF229	2.00	2.43	2.44	2.43	2.15	2.32	2.38	2.14	1.59	1.47	1.13	12.38	10.02	8.71	7.67	6.09	5.35	4.63	4.18	3.54	2.89	2.71
OF225	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF222	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF215	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF218	0.59	0.82	0.83	0.81	0.69	0.77	0.79	0.80	0.45	0.39	0.23	5.32	4.18	3.68	3.24	2.48	2.15	1.84	1.63	1.33	1.15	0.97
OF391	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF392	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF398	1.78	3.87	4.22	4.00	3.83	4.07	4.03	4.05	3.16	2.77	2.09	22.82	22.19	20.35	18.24	14.28	12.20	10.42	9.31	7.78	6.89	6.06
OF185	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF180	1.76	2.93	3.17	2.99	2.72	2.76	2.79	2.97	1.91	1.70	1.17	17.94	14.56	12.76	11.26	8.79	7.54	6.47	5.81	4.86	4.24	3.65
OF153	0.28	0.30	0.29	0.26	0.24	0.26	0.28	0.27	0.13	0.11	0.07	1.63	1.17	1.00	0.89	0.70	0.60	0.50	0.44	0.36	0.30	0.26
OF386	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF383	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF358	1.13	2.19	2.40	2.23	2.07	2.09	2.16	2.26	1.55	1.35	0.95	13.80	11.63	10.55	9.40	7.30	6.27	5.35	4.78	4.00	3.51	3.05
OF364	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF306	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF337	0.00	0.21	0.21	0.22	0.06	0.13	0.18	0.16	0.00	0.00	0.00	0.66	0.57	0.53	0.50	0.47	0.45	0.44	0.44	0.44	0.43	0.33
OF338	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.52	3.36	2.73	2.25	1.53	1.16	0.82	0.61	0.29	0.08	0.00
OF656	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF333	0.57	0.64	0.60	0.63	0.49	0.59	0.63	0.58	0.30	0.26	0.14	3.91	3.09	2.64	2.29	1.80	1.55	1.31	1.16	0.94	0.80	0.67
OF334	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF331	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF318	0.60	0.64	0.59	0.57	0.50	0.55	0.59	0.55	0.26	0.22	0.13	3.69	2.67	2.24	2.02	1.57	1.35	1.13	0.99	0.79	0.67	0.57
OF317	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF321	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF322	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF323	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF324	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF325	0.73	1.59	1.73	1.61	1.49	1.54	1.57	1.62	1.14	0.98	0.67	10.40	8.99	8.15	7.28	5.63	4.81	4.09	3.64	3.04	2.66	2.31
OF310	0.57	0.76	0.76	0.75	0.64	0.73	0.74	0.74	0.45	0.39	0.26	4.60	3.70	3.26	2.88	2.20	1.92	1.65	1.47	1.22	1.06	0.90
OF296	0.25	2.81	3.15	2.81	2.52	2.71	2.57	2.68	1.52	1.09	0.20	26.98	23.92	21.08	18.74	14.04	11.71	9.71	8.46	6.76	5.73	4.73
OF300	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57
OF388	1.50	1.20	1.20	1.21	1.21	1.20	1.20	1.20	1.20	1.20	0.83	1.20	1.20	1.20	1.21	1.20	1.20	1.21	1.21	1.21	1.20	1.20
OF387	0.75	1.40	1.57	1.46	1.33	1.25	1.30	1.44	0.83	0.72	0.45	9.49	7.63	6.51	5.70	4.39	3.75	3.20	2.86	2.37	2.02	1.72
OF768	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF329	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF41	0.00	1.08	1.45	1.38	1.39	1.52	1.57	1.52	0.99	0.74	0.38	12.24	13.76	12.73	11.68	8.98	7.49	6.22	5.42	4.33	3.68	3.11
OF62	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF63	0.42	0.79	0.85	0.79	0.69	0.72	0.74	0.79	0.44	0.37	0.19	5.73	4.53	4.00	3.55	2.71	2.32	1.96	1.74	1.41	1.22	1.02
OF672	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF81	0.84	1.58	1.89	1.78	1.60	1.84	2.05	1.99	1.21	0.88	0.57	9.27	7.47	6.49	5.80	4.68	4.14	3.66	3.35	2.90	2.60	2.33
OF416	1.51	2.56	2.81	2.63	2.40	2.45	2.47	2.64	1.72	1.53	1.04	15.97	13.06	11.55	10.26	7.96	6.84	5.85	5.25	4.39	3.85	3.31
OF414	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF722	1.72	3.91	4.17	3.92	3.70	3.83	3.76	3.85	2.98	2.66	2.01	21.74	19.39	17.32	15.61	12.17	10.46	8.99	8.08	6.83	6.07	5.34
OF697	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OF698	2.66	5.03	5.49	5.12	4.80	5.02	5.25	5.39	3.91	3.41	2.58	30.57	26.88	24.76	22.08	17.23	14.76	12.64	11.33	9.53	8.43	7.45

	5 Year ARI Event											20 Year ARI Event										
Storm Duration (mins)	5	15	20	30	45	60	90	120	180	270	360	5	15	20	30	45	60	90	120	180	270	360
Catchment node																						
Cat172	0.53	0.94	1.04	1.01	0.90	0.89	0.97	1.03	0.71	0.62	0.47	0.73	1.26	1.39	1.35	1.21	1.21	1.28	1.36	0.95	0.85	0.63
Cat223	0.54	0.62	0.62	0.61	0.52	0.57	0.62	0.58	0.36	0.32	0.24	0.71	0.81	0.80	0.79	0.68	0.76	0.82	0.77	0.48	0.43	0.32
Cat221	1.00	1.74	1.93	1.86	1.66	1.63	1.78	1.89	1.29	1.12	0.90	1.37	2.32	2.57	2.48	2.23	2.22	2.42	2.59	1.77	1.57	1.20
Cat231	1.10	1.92	2.14	2.07	1.84	1.82	1.98	2.10	1.44	1.25	1.12	1.51	2.57	2.85	2.76	2.48	2.48	2.70	2.88	2.04	1.82	1.53
Cat219	2.30	3.92	4.23	4.09	3.64	3.43	3.67	3.94	2.59	2.27	1.77	3.05	5.11	5.48	5.30	4.73	4.48	4.81	5.18	3.46	3.06	2.34
Cat225	0.88	0.89	0.87	0.86	0.73	0.82	0.88	0.83	0.46	0.41	0.30	1.15	1.16	1.13	1.12	0.96	1.06	1.13	1.07	0.60	0.54	0.39
Cat224	0.65	1.16	1.32	1.28	1.14	1.18	1.28	1.35	0.95	0.93	0.78	0.92	1.59	1.80	1.74	1.57	1.66	1.79	1.90	1.39	1.28	1.17
Cat222	0.54	0.93	1.02	0.98	0.88	0.84	0.92	0.98	0.66	0.57	0.48	0.73	1.23	1.34	1.30	1.16	1.12	1.23	1.32	0.91	0.80	0.64
Cat232	0.44	0.76	0.84	0.81	0.72	0.70	0.76	0.81	0.55	0.48	0.42	0.59	1.01	1.11	1.07	0.96	0.94	1.03	1.10	0.77	0.68	0.56
Cat220	0.82	0.88	0.83	0.89	0.70	0.87	0.97	0.84	0.59	0.51	0.41	1.09	1.17	1.12	1.20	0.95	1.19	1.32	1.17	0.81	0.72	0.55
Cat229	0.03	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.01	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.02	0.02	0.02
Cat227	0.05	0.09	0.10	0.10	0.09	0.08	0.08	0.09	0.06	0.05	0.04	0.07	0.12	0.13	0.12	0.11	0.10	0.11	0.12	0.08	0.07	0.05
Cat226	0.70	1.22	1.35	1.30	1.16	1.12	1.22	1.30	0.88	0.77	0.65	0.96	1.62	1.78	1.72	1.54	1.51	1.65	1.77	1.23	1.08	0.86
Cat230	0.22	0.24	0.24	0.24	0.20	0.23	0.26	0.23	0.15	0.13	0.10	0.29	0.32	0.31	0.32	0.26	0.31	0.34	0.31	0.20	0.18	0.13
Cat228	0.15	0.15	0.15	0.15	0.12	0.15	0.16	0.14	0.10	0.08	0.06	0.19	0.20	0.19	0.20	0.16	0.20	0.22	0.20	0.13	0.12	0.09
Cat218	0.07	0.07	0.07	0.07	0.06	0.07	0.08	0.07	0.04	0.04	0.03	0.09	0.09	0.09	0.09	0.08	0.09	0.10	0.09	0.06	0.05	0.04
Cat217	0.40	0.48	0.47	0.48	0.40	0.46	0.50	0.46	0.30	0.27	0.20	0.54	0.64	0.62	0.65	0.53	0.63	0.66	0.63	0.40	0.36	0.26
Cat216	0.39	0.47	0.46	0.48	0.39	0.46	0.50	0.46	0.30	0.27	0.20	0.53	0.63	0.61	0.64	0.52	0.62	0.66	0.63	0.40	0.36	0.26
Cat215	1.41	2.44	2.68	2.59	2.31	2.22	2.42	2.58	1.74	1.52	1.29	1.91	3.23	3.53	3.42	3.06	2.97	3.25	3.48	2.40	2.14	1.74
Cat203	0.95	1.99	2.33	2.86	3.08	3.17	3.15	3.02	2.60	2.53	2.09	1.31	2.67	3.12	3.82	4.08	4.21	4.20	4.04	3.51	3.43	2.93
Cat124	0.48	0.66	0.67	0.69	0.57	0.65	0.69	0.67	0.43	0.39	0.28	0.66	0.89	0.90	0.93	0.77	0.86	0.90	0.89	0.57	0.52	0.38
Cat139	1.47	3.01	3.31	3.23	2.96	3.06	3.04	3.18	2.44	2.13	1.65	2.02	4.02	4.40	4.29	3.95	4.11	4.10	4.19	3.27	2.92	2.19
Cat106	0.71	1.52	1.78	1.82	1.79	1.92	1.97	1.88	1.51	1.40	1.15	1.00	2.07	2.41	2.45	2.43	2.59	2.67	2.58	2.12	1.92	1.53
Cat13	1.20	2.36	2.62	2.54	2.31	2.37	2.44	2.57	1.91	1.66	1.35	1.67	3.18	3.50	3.40	3.11	3.21	3.34	3.50	2.64	2.33	1.81
Cat71	0.32	0.67	0.79	0.85	0.85	0.90	0.92	0.88	0.70	0.66	0.56	0.44	0.91	1.06	1.14	1.14	1.21	1.24	1.19	0.98	0.91	0.75
Cat24	0.78	1.49	1.66	1.61	1.45	1.47	1.53	1.61	1.17	1.02	0.81	1.08	2.00	2.20	2.14	1.95	1.98	2.08	2.17	1.60	1.42	1.08
Cat54	1.06	1.31	1.25	1.35	1.05	1.31	1.41	1.28	0.82	0.74	0.54	1.46	1.77	1.69	1.84	1.44	1.73	1.84	1.71	1.09	0.98	0.72
Cat37	0.70	1.50	1.74	1.75	1.71	1.83	1.87	1.80	1.45	1.33	1.13	0.99	2.05	2.35	2.37	2.32	2.48	2.54	2.48	2.04	1.85	1.51
Cat153	1.17	2.22	2.46	2.39	2.16	2.18	2.29	2.41	1.75	1.53	1.20	1.62	2.98	3.29	3.19	2.90	2.95	3.12	3.24	2.38	2.12	1.60
Cat187	0.99	2.13	2.41	2.39	2.26	2.43	2.46	2.51	1.98	1.82	1.55	1.41	2.93	3.28	3.26	3.10	3.33	3.41	3.51	2.83	2.52	2.09
Cat27	0.83	1.39	1.59	1.60	1.38	1.62	1.74	1.80	1.22	1.13	0.82	1.24	2.00	2.29	2.30	2.02	2.29	2.33	2.40	1.67	1.53	1.12
Cat31	0.84	1.60	1.79	1.73	1.56	1.58	1.69	1.78	1.29	1.12	0.87	1.18	2.16	2.40	2.33	2.12	2.16	2.27	2.37	1.74	1.56	1.17
Cat28	2.20	3.00	3.01	3.09	2.55	2.88	3.14	3.00	2.00	1.81	1.32	3.00	4.00	4.02	4.15	3.45	3.92	4.11	4.06	2.66	2.40	1.76
Cat30	1.54	2.98	3.33	3.23	2.92	2.98	3.16	3.33	2.44	2.13	1.73	2.16	4.04	4.48	4.35	3.97	4.11	4.36	4.57	3.39	3.00	2.33
Cat56	1.08	2.19	2.42	2.35	2.15	2.23	2.23	2.34	1.78	1.55	1.21	1.49	2.93	3.22	3.13	2.88	3.00	3.02	3.09	2.40	2.14	1.61
Cat59	0.96	1.64	1.80	1.76	1.55	1.58	1.71	1.80	1.23	1.09	0.81	1.33	2.21	2.42	2.37	2.11	2.16	2.25	2.39	1.64	1.48	1.09
Cat62	0.60	0.89	0.92	0.95	0.79	0.88	0.94	0.94	0.60	0.55	0.40	0.83	1.21	1.25	1.29	1.09	1.17	1.23	1.24	0.80	0.72	0.53
Cat76	0.39	0.64	0.68	0.67	0.58	0.59	0.65	0.67	0.46	0.40	0.30	0.53	0.85	0.90	0.89	0.78	0.80	0.85	0.89	0.60	0.55	0.40
Cat84	0.62	1.31	1.53	1.56	1.53	1.64	1.68	1.61	1.29	1.19	1.02	0.87	1.78	2.08	2.10	2.07	2.22	2.28	2.21	1.81	1.66	1.37
Cat141	0.55	0.96	1.08	1.04	0.93	0.93	0.99	1.08	0.69	0.63	0.46	0.77	1.30	1.45	1.41	1.27	1.25	1.30	1.41	0.92	0.83	0.61
Cat114	0.38	0.52	0.53	0.54	0.45	0.50	0.55	0.52	0.35	0.32	0.23	0.52	0.70	0.70	0.72	0.60	0.68	0.71	0.71	0.47	0.42	0.31
Cat118	0.55	1.07	1.19	1.15	1.05	1.07	1.10	1.16	0.86	0.75	0.59	0.76	1.44	1.58	1.54	1.41	1.45	1.50	1.55	1.17	1.04	0.79
Cat116	0.40	0.45	0.41	0.45	0.35	0.43	0.46	0.43	0.24	0.22	0.16	0.54	0.61	0.57	0.59	0.48	0.56	0.60	0.56	0.32	0.29	0.21
Cat122	0.40	0.48	0.46	0.49	0.38	0.47	0.51	0.46	0.29	0.26	0.19	0.55	0.64	0.61	0.66	0.52	0.62	0.66	0.62	0.38	0.35	0.25
Cat136	0.76	1.43	1.58	1.54	1.39	1.39	1.46	1.54	1.11	0.97	0.76	1.05	1.91	2.11	2.05	1.86	1.88	1.99	2.07	1.50	1.34	1.01
Cat165	0.16	0.20	0.18	0.20	0.15	0.19	0.20	0.20	0.10	0.09	0.07	0.23	0.27	0.26	0.26	0.22	0.25	0.27	0.26	0.14	0.12	0.09
Cat176	1.10	1.86	2.02	1.98	1.74	1.77	1.92	2.02	1.35	1.22	0.89	1.52	2.50	2.71	2.66	2.35	2.41	2.51	2.66	1.80	1.63	1.19
Cat152	1.10	2.32	2.59	2.57	2.43	2.57	2.53	2.56	2.04	1.80	1.45	1.53	3.12	3.47	3.43	3.24	3.45	3.42	3.42	2.81	2.49	1.94
Cat151	0.44	0.62	0.63	0.63	0.53	0.58	0.63	0.61	0.41	0.37	0.27	0.60	0.82	0.83	0.84	0.71	0.78	0.83	0.83	0.54	0.49	0.36
Cat159	1.01	1.36	1.36	1.40	1.15	1.31	1.42	1.36	0.89	0.80	0.58	1.38	1.82	1.82	1.89	1.56	1.78	1.86	1.81	1.18	1.06	0.78
Cat189	0.81	1.35	1.44	1.41	1.24	1.23	1.33	1.40	0.92	0.83	0.60	1.10	1.79	1.91	1.86	1.65	1.65	1.73	1.83	1.22	1.10	0.80

	AR											PMF Even										
Storm Duration (mins)	5	15	20	30	45	60	90	120	180	270	360	15	30	45	60	90	120	150	180	240	300	360
Catchment node																						
Cat172	0.99	1.63	1.78	1.66	1.55	1.54	1.57	1.68	1.17	1.05	0.78	8.38	7.65	6.78	6.08	4.76	4.11	3.54	3.19	2.70	2.39	2.09
Cat223	0.94	1.00	0.98	0.95	0.84	0.93	1.00	0.95	0.59	0.52	0.39	4.03	3.47	3.13	2.89	2.25	2.00	1.75	1.58	1.32	1.13	1.03
Cat221	1.85	2.99	3.26	3.05	2.83	2.84	3.03	3.19	2.18	1.93	1.48	13.68	12.84	12.10	10.94	8.57	7.41	6.44	5.81	4.92	4.25	3.87
Cat231	2.05	3.32	3.63	3.39	3.15	3.19	3.42	3.69	2.62	2.26	1.90	15.24	14.38	14.08	13.62	11.01	9.48	8.07	7.17	6.10	5.28	4.81
Cat219	4.04	6.48	6.82	6.39	5.87	5.54	5.92	6.42	4.26	3.75	2.87	28.17	25.49	22.41	20.31	16.35	14.20	12.46	11.28	9.58	8.19	7.38
Cat225	1.50	1.43	1.38	1.31	1.19	1.28	1.36	1.29	0.73	0.66	0.48	5.79	4.74	4.17	3.85	3.04	2.61	2.24	1.99	1.65	1.40	1.25
Cat224	1.27	2.08	2.33	2.17	2.03	2.17	2.31	2.48	1.82	1.61	1.46	9.88	10.26	10.62	10.08	8.39	7.37	6.27	5.57	4.64	3.97	3.61
Cat222	0.97	1.57	1.69	1.58	1.46	1.42	1.54	1.66	1.14	0.99	0.79	7.02	6.49	6.01	5.65	4.56	3.89	3.33	3.01	2.59	2.23	2.02
Cat232	0.80	1.29	1.40	1.31	1.21	1.21	1.30	1.40	0.98	0.85	0.69	5.86	5.45	5.18	4.97	3.99	3.43	2.92	2.60	2.25	1.94	1.76
Cat220	1.45	1.48	1.39	1.46	1.20	1.51	1.61	1.49	1.00	0.90	0.68	5.82	5.83	5.54	5.09	3.98	3.40	2.93	2.67	2.26	1.97	1.79
Cat218	0.12	0.12	0.11	0.11	0.10	0.12	0.12	0.11	0.07	0.06	0.05	0.47	0.43	0.39	0.35	0.14	0.27	0.24	0.21	0.19	0.16	0.12
Cat217	0.72	0.80	0.77	0.78	0.67	0.78	0.80	0.77	0.49	0.44	0.32	3.22	3.06	2.72	2.42	1.90	1.69	1.46	1.31	1.11	0.95	0.85
Cat216	0.71	0.79	0.76	0.78	0.66	0.77	0.80	0.76	0.49	0.44	0.32	3.19	3.06	2.73	2.42	1.90	1.68	1.46	1.31	1.11	0.95	0.85
Cat215	2.57	4.14	4.46	4.17	3.85	3.77	4.07	4.39	3.04	2.65	2.15	20.58	18.43	16.87	16.07	12.89	11.01	9.36	8.38	7.20	6.37	5.61
Cat203	1.77	3.56	4.14	5.06	5.29	5.40	5.33	5.13	4.41	4.24	3.61	17.27	26.70	28.00	26.37	21.80	18.98	16.20	14.45	12.03	10.59	9.32
Cat124	0.89	1.14	1.13	1.15	0.99	1.05	1.10	1.08	0.70	0.63	0.47	5.35	4.87	4.19	3.68	2.92	2.54	2.20	1.97	1.66	1.44	1.25
Cat139	2.74	5.31	5.65	5.31	5.02	5.20	5.07	5.18	4.02	3.58	2.70	26.37	26.41	23.57	21.24	16.54	14.21	12.20	10.96	9.26	8.23	7.23
Cat106	1.38	2.78	3.23	3.16	3.18	3.32	3.39	3.32	2.63	2.37	1.89	13.87	17.65	16.05	14.62	11.58	9.91	8.48	7.59	6.36	5.64	5.00
Cat13	2.27	4.19	4.50	4.22	3.98	4.09	4.25	4.36	3.27	2.88	2.24	21.48	20.82	19.28	17.28	13.54	11.68	10.04	9.02	7.62	6.76	5.98
Cat71	0.61	1.22	1.42	1.47	1.49	1.55	1.57	1.53	1.24	1.12	0.92	6.04	8.17	7.67	7.10	5.62	4.81	4.11	3.67	3.07	2.72	2.41
Cat24	1.47	2.61	2.82	2.64	2.48	2.51	2.59	2.68	1.96	1.74	1.33	13.40	12.58	11.53	10.31	8.08	6.98	6.00	5.39	4.56	4.04	3.57
Cat54	1.97	2.24	2.13	2.26	1.85	2.12	2.24	2.09	1.34	1.21	0.89	10.06	9.30	8.02	7.02	5.58	4.87	4.20	3.78	3.16	2.75	2.40
Cat37	1.36	2.76	3.14	3.04	3.04	3.18	3.24	3.21	2.58	2.29	1.87	13.76	16.96	15.65	14.33	11.37	9.72	8.32	7.44	6.24	5.54	4.91
Cat153	2.20	3.90	4.22	3.95	3.70	3.76	3.85	4.00	2.93	2.61	1.98	20.13	18.92	17.19	15.39	12.05	10.39	8.94	8.04	6.80	6.03	5.31
Cat187	1.96	3.97	4.35	4.14	4.09	4.32	4.37	4.44	3.61	3.14	2.59	20.12	23.07	21.62	19.90	15.77	13.43	11.49	10.28	8.63	7.66	6.79
Cat27	1.78	2.76	3.10	2.96	2.74	2.90	2.90	2.99	2.08	1.90	1.40	15.13	14.76	12.80	11.34	8.77	7.55	6.51	5.87	5.00	4.39	3.82
Cat31	1.61	2.84	3.09	2.89	2.72	2.77	2.80	2.93	2.14	1.92	1.44	14.84	14.11	12.61	11.30	8.84	7.60	6.53	5.88	4.97	4.42	3.88
Cat28	4.05	5.09	5.06	5.08	4.39	4.90	5.01	4.96	3.27	2.95	2.17	23.69	22.10	19.30	17.03	13.29	11.68	10.10	9.06	7.64	6.70	5.83
Cat30	2.96	5.33	5.79	5.42	5.10	5.32	5.55	5.69	4.21	3.71	2.88	27.94	27.18	25.06	22.38	17.53	15.06	12.94	11.63	9.83	8.73	7.75
Cat56	2.02	3.88	4.14	3.89	3.67	3.80	3.73	3.82	2.95	2.63	1.98	19.49	19.36	17.29	15.58	12.14	10.43	8.96	8.05	6.80	6.04	5.31
Cat59	1.81	2.86	3.11	2.93	2.70	2.74	2.77	2.94	2.02	1.83	1.34	14.61	13.36	11.86	10.56	8.26	7.13	6.15	5.55	4.68	4.15	3.61
Cat62	1.14	1.56	1.62	1.60	1.41	1.43	1.50	1.52	0.99	0.89	0.65	7.67	6.87	5.90	5.22	4.11	3.56	3.09	2.78	2.33	2.03	1.76
Cat76	0.72	1.09	1.15	1.09	0.99	1.02	1.04	1.09	0.74	0.67	0.49	5.36	4.84	4.30	3.85	3.01	2.62	2.26	2.04	1.71	1.52	1.32
Cat84	1.19	2.40	2.77	2.70	2.71	2.84	2.89	2.84	2.31	2.06	1.70	11.96	15.07	14.05	13.00	10.30	8.81	7.54	6.74	5.65	5.00	4.43
Cat141	1.05	1.69	1.87	1.75	1.63	1.55	1.60	1.74	1.13	1.02	0.75	8.81	7.93	6.81	6.00	4.69	4.05	3.50	3.16	2.67	2.32	2.02
Cat114	0.69	0.88	0.89	0.88	0.77	0.86	0.87	0.87	0.58	0.52	0.38	4.14	3.83	3.39	3.01	2.33	2.05	1.78	1.60	1.34	1.19	1.03
Cat118	1.03	1.89	2.03	1.91	1.79	1.84	1.87	1.92	1.44	1.28	0.97	9.65	9.29	8.45	7.58	5.93	5.11	4.39	3.94	3.33	2.96	2.61
Cat116	0.73	0.76	0.72	0.70	0.63	0.68	0.72	0.68	0.39	0.35	0.26	3.37	2.79	2.37	2.14	1.70	1.47	1.26	1.12	0.92	0.80	0.70
Cat122	0.74	0.81	0.77	0.80	0.67	0.76	0.81	0.75	0.47	0.43	0.31	3.59	3.26	2.81	2.46	1.97	1.72	1.48	1.33	1.11	0.97	0.84
Cat136	1.43	2.49	2.70	2.53	2.36	2.38	2.46	2.56	1.85	1.65	1.25	12.80	11.93	10.85	9.70	7.60	6.57	5.65	5.08	4.30	3.81	3.35
Cat165	0.32	0.33	0.33	0.30	0.28	0.30	0.32	0.31	0.17	0.15	0.11	1.54	1.20	1.04	0.93	0.74	0.63	0.54	0.48	0.39	0.34	0.30
Cat176	2.06	3.22	3.47	3.29	3.02	3.05	3.09	3.27	2.21	2.00	1.47	16.35	14.87	13.07	11.56	9.08	7.84	6.77	6.11	5.15	4.54	3.95
Cat152	2.07	4.17	4.52	4.30	4.13	4.37	4.33	4.35	3.46	3.06	2.39	20.41	22.48	20.65	18.54	14.58	12.50	10.71	9.61	8.08	7.19	6.36
Cat151	0.80	1.04	1.04	1.03	0.90	0.98	1.01	1.02	0.67	0.60	0.44	4.83	4.39	3.89	3.45	2.70	2.36	2.06	1.84	1.55	1.36	1.19
Cat159	1.86	2.31	2.29	2.31	1.99	2.18	2.26	2.21	1.45	1.31	0.96	10.74	9.96	8.58	7.54	5.96	5.21	4.50	4.04	3.41	2.97	2.58
Cat189	1.48	2.28	2.41	2.28	2.08	2.07	2.11	2.25	1.49	1.34	0.99	11.18	9.99	8.72	7.74	6.11	5.28	4.56	4.12	3.46	3.04	2.64

Appendix C Peak Flows Across Selected Roads

The peak flows at a number of selected roads crossing the Canley Heights catchment were extracted from the TUFLOW model, for the 5, 20 and 100 year ARI events. The values reported in Table C1 are total flows crossing the length of the road.

The location of the key roads is shown in the following figure.

Table C1 Peak Flows across Selected Roads

Key Road	Storm Event					
	5 Year ARI		20 Year ARI		100 Year ARI	
	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Crit.Dur (min)	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Crit.Dur (min)	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Crit.Dur (min)
Cumberland Highway	3.6	120	5.6	120	8.5	90
McBurney Road	8.7	120	13	120	19	120
Gladstone Street South	9.4	120	15	120	21	120
Sackville Street	8.6	120	16	120	63	120
Canley Vale Road East	3.9	120	6.8	120	11	120
Canley Vale Road West	6.5	120	11	120	16	120
St Johns Road East	8.7	120	14	120	20	90
St Johns Road West	1.4	120	1.9	120	3.0	120
Railway Parade	2.1	120	2.7	120	3.1	90
Gladstone Street North	0.2	120	0.4	120	0.8	90

Appendix D 100 Year ARI Flood Mapping

This appendix includes:

- Peak Water Level Contours
- Peak Depth Contours
- Peak Velocity Contours
- Peak Velocity times Depth Contours

Appendix E Flood Risk Precinct Mapping

Appendix F Fence Blockage Modelling

